forked from magicleap/SuperGluePretrainedNetwork
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatch_pairs_mower.py
440 lines (396 loc) · 18.4 KB
/
match_pairs_mower.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
# mower dataset :superpoint + superglue + eval
from pathlib import Path
import argparse
import random
import numpy as np
import matplotlib.cm as cm
import torch
from copy import deepcopy
from models.matching import Matching
from models.utils import (quaternion_matrix, compute_pose_error, compute_epipolar_error,
estimate_pose, make_matching_plot,
error_colormap, AverageTimer, pose_auc, read_image2,
rotate_intrinsics, rotate_pose_inplane,
scale_intrinsics, Loransac)
torch.set_grad_enabled(False)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Image pair matching and pose evaluation with SuperGlue',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--input_root_dir', type=str, default='/persist_dataset/mower/B6_2021-06-30-10-45_all_2021-06-30-12-20_sweep_2021-07-14-06-10-39/',
help='Path to the root of datasets.')
parser.add_argument(
'--input_pairs', type=str, default='mower_pairs_800-360-512_with_gt.txt',
help='Path to the list of image pairs')
parser.add_argument(
'--input_dir', type=str, default='sensors/records_data/map/',
help='Path to the directory that contains the images')
parser.add_argument(
'--output_dir', type=str, default='mower_800_360_512/',
help='Path to the directory in which the .npz results and optionally,'
'the visualization images are written')
parser.add_argument(
'--max_length', type=int, default=-1,
help='Maximum number of pairs to evaluate')
parser.add_argument(
'--resize', type=int, nargs='+', default=[1280, 720],
help='Resize the input image before running inference. If two numbers, '
'resize to the exact dimensions, if one number, resize the max '
'dimension, if -1, do not resize')
parser.add_argument(
'--resize_float', action='store_true',
help='Resize the image after casting uint8 to float')
parser.add_argument(
'--crop_size', type=int, nargs='+', default=[240, 0, 800, 360],
help="offset_x, offset_y, width, height, if -1, do not crop")
parser.add_argument(
'--superglue', choices={'indoor', 'outdoor'}, default='outdoor',
help='SuperGlue weights')
parser.add_argument(
'--max_keypoints', type=int, default=512,
help='Maximum number of keypoints detected by Superpoint'
' (\'-1\' keeps all keypoints)')
parser.add_argument(
'--keypoint_threshold', type=float, default=0.005,
help='SuperPoint keypoint detector confidence threshold')
parser.add_argument(
'--nms_radius', type=int, default=3,
help='SuperPoint Non Maximum Suppression (NMS) radius'
' (Must be positive)')
parser.add_argument(
'--sinkhorn_iterations', type=int, default=50,
help='Number of Sinkhorn iterations performed by SuperGlue')
parser.add_argument(
'--match_threshold', type=float, default=0.2,
help='SuperGlue match threshold')
parser.add_argument(
'--do_nn_matching', action='store_true')
parser.add_argument(
'--viz', action='store_true',
help='Visualize the matches and dump the plots')
parser.add_argument(
'--eval', action='store_true',
help='Perform the evaluation'
' (requires ground truth pose and intrinsics)')
parser.add_argument(
'--fast_viz', action='store_true',
help='Use faster image visualization with OpenCV instead of Matplotlib')
parser.add_argument(
'--cache', action='store_true',
help='Skip the pair if output .npz files are already found')
parser.add_argument(
'--show_keypoints', action='store_true',
help='Plot the keypoints in addition to the matches')
parser.add_argument(
'--viz_extension', type=str, default='jpg', choices=['jpg', 'png', 'pdf'],
help='Visualization file extension. Use pdf for highest-quality.')
parser.add_argument(
'--opencv_display', action='store_true',
help='Visualize via OpenCV before saving output images')
parser.add_argument(
'--shuffle', action='store_true',
help='Shuffle ordering of pairs before processing')
parser.add_argument(
'--force_cpu', action='store_true',
help='Force pytorch to run in CPU mode.')
parser.add_argument(
'--loransac', action='store_true',
help='loransac.')
parser.add_argument(
'--step_size', type=int, default=1,
help='Set the step size of the pair to reduce the amount of '
'test image-pairs and visualize data.')
opt = parser.parse_args()
print(opt)
assert not (opt.opencv_display and not opt.viz), 'Must use --viz with --opencv_display'
assert not (opt.opencv_display and not opt.fast_viz), 'Cannot use --opencv_display without --fast_viz'
assert not (opt.fast_viz and not opt.viz), 'Must use --viz with --fast_viz'
assert not (opt.fast_viz and opt.viz_extension == 'pdf'), 'Cannot use pdf extension with --fast_viz'
# if len(opt.resize) == 2 and opt.resize[1] == -1:
# opt.resize = opt.resize[0:1]
# if len(opt.resize) == 2:
# print('Will resize to {}x{} (WxH)'.format(
# opt.resize[0], opt.resize[1]))
# elif len(opt.resize) == 1 and opt.resize[0] > 0:
# print('Will resize max dimension to {}'.format(opt.resize[0]))
# elif len(opt.resize) == 1:
# print('Will not resize images')
# else:
# raise ValueError('Cannot specify more than two integers for --resize')
if len(opt.crop_size) == 4:
print('Will crop image : offset_x = {}, offset_y = {}, width = {}, height = {}.'.format(
opt.crop_size[0], opt.crop_size[1], opt.crop_size[2], opt.crop_size[3]))
elif len(opt.crop_size) == 1:
print('Will not crop images')
else:
raise ValueError('Cannot specify less than four integers for --crop')
with open(opt.input_root_dir + opt.input_pairs, 'r') as f:
pairs = [l.split() for l in f.readlines()]
if opt.max_length > -1:
pairs = pairs[0:np.min([len(pairs), opt.max_length])]
if opt.shuffle:
random.Random(0).shuffle(pairs)
if opt.eval:
if not all([len(p) == 21 for p in pairs]):
raise ValueError(
'All pairs should have ground truth info for evaluation.'
'File \"{}\" needs 38 valid entries per row'.format(opt.input_pairs))
# Load the SuperPoint and SuperGlue models.
device = 'cuda:2' if torch.cuda.is_available() and not opt.force_cpu else 'cpu'
print('Running inference on device \"{}\"'.format(device))
config = {
'use_nn_matcher': opt.do_nn_matching,
'superpoint': {
'nms_radius': opt.nms_radius,
'keypoint_threshold': opt.keypoint_threshold,
'max_keypoints': opt.max_keypoints
},
'superglue': {
'weights': opt.superglue,
'sinkhorn_iterations': opt.sinkhorn_iterations,
'match_threshold': opt.match_threshold,
},
'nn': {
'distance_thresh': 0.7,
'mutual_check': False,
},
}
# for debug
matching = Matching(config).eval().to(device)
# Create the output directories if they do not exist already.
input_dir = Path(opt.input_root_dir + opt.input_dir)
print('Looking for data in directory \"{}\"'.format(input_dir))
dump_dir = Path(opt.input_root_dir + opt.output_dir)
dump_dir.mkdir(exist_ok=True, parents=True)
output_matches_dir = Path.joinpath(dump_dir, "data", "matches")
output_matches_dir.mkdir(exist_ok=True, parents=True)
print('Will write matches to directory \"{}\"'.format(output_matches_dir))
output_evals_dir = Path.joinpath(dump_dir, "data", "evals")
output_evals_dir.mkdir(exist_ok=True, parents=True)
vis_dir = Path.joinpath(dump_dir, "vis")
vis_dir.mkdir(exist_ok=True, parents=True)
if opt.eval:
print('Will write evaluation results',
'to directory \"{}\"'.format(output_evals_dir))
if opt.viz:
print('Will write visualization images to',
'directory \"{}\"'.format(vis_dir))
# statistics average keypoints num
all_kpts_num = []
timer = AverageTimer(newline=True)
for i, pair in enumerate(pairs):
# Reduce test image-pairs.
if i % opt.step_size != 0:
continue
name0, name1 = pair[:2]
stem0, stem1 = Path(name0).stem, Path(name1).stem
matches_path = output_matches_dir / '{}_{}_matches.npz'.format(stem0, stem1)
eval_path = output_evals_dir / '{}_{}_evaluation.npz'.format(stem0, stem1)
viz_path = vis_dir / '{}_{}_matches.{}'.format(stem0, stem1, opt.viz_extension)
viz_eval_path = vis_dir / \
'{}_{}_evaluation.{}'.format(stem0, stem1, opt.viz_extension)
# Handle --cache logic.
do_match = True
do_eval = opt.eval
do_viz = opt.viz
do_viz_eval = opt.eval and opt.viz
# miao
if opt.cache:
if matches_path.exists():
try:
results = np.load(matches_path)
except:
raise IOError('Cannot load matches .npz file: %s' %
matches_path)
kpts0, kpts1 = results['keypoints0'], results['keypoints1']
matches, conf = results['matches'], results['match_confidence']
all_kpts_num.append((kpts0.shape[0] + kpts1.shape[0]) // 2)
do_match = False
if opt.eval and eval_path.exists():
try:
results = np.load(eval_path)
except:
raise IOError('Cannot load eval .npz file: %s' % eval_path)
err_R, err_t = results['error_R'], results['error_t']
precision = results['precision']
matching_score = results['matching_score']
num_correct = results['num_correct']
epi_errs = results['epipolar_errors']
do_eval = False
if opt.viz and viz_path.exists():
do_viz = False
if opt.viz and opt.eval and viz_eval_path.exists():
do_viz_eval = False
timer.update('load_cache')
if not (do_match or do_eval or do_viz or do_viz_eval):
timer.print('Finished pair {:5} of {:5}'.format(i, len(pairs)))
continue
# Load the image pair.
image0, inp0 = read_image2(
input_dir / name0, device, 0, opt.crop_size)
image1, inp1 = read_image2(
input_dir / name1, device, 0, opt.crop_size)
if image0 is None or image1 is None:
print('Problem reading image pair: {} {}'.format(
input_dir / name0, input_dir / name1))
exit(1)
timer.update('load_image')
if do_match:
# Perform the matching.
pred = matching({'image0': inp0, 'image1': inp1})
pred = {k: v[0].cpu().numpy() for k, v in pred.items()}
kpts0, kpts1 = pred['keypoints0'], pred['keypoints1']
if len(opt.crop_size) == 4:
offset = np.zeros(2, )
offset[0], offset[1] = opt.crop_size[0], opt.crop_size[1]
kpts0 = kpts0 + offset[None]
kpts1 = kpts1 + offset[None]
matches, conf = pred['matches0'], pred['matching_scores0']
timer.update('matcher')
all_kpts_num.append((kpts0.shape[0] + kpts1.shape[0]) // 2)
# Write the matches to disk.
out_matches = {'keypoints0': kpts0, 'keypoints1': kpts1,
'matches': matches, 'match_confidence': conf}
np.savez(str(matches_path), **out_matches)
# Keep the matching keypoints.
valid = matches > -1
mkpts0 = kpts0[valid]
mkpts1 = kpts1[matches[valid]]
mconf = conf[valid]
if do_eval:
# Estimate the pose and compute the pose error.
assert len(pair) == 21, 'Pair does not have ground truth info'
k0 = np.array(pair[2: 6]).astype(float)
K0 = np.zeros((3, 3)).astype(float)
K1 = np.zeros((3, 3)).astype(float)
K0[0, 0] = k0[0]
K0[1, 1] = k0[1]
K0[0, 2] = k0[2]
K0[1, 2] = k0[3]
k1 = np.array(pair[8: 12]).astype(float)
K1[0, 0] = k1[0]
K1[1, 1] = k1[1]
K1[0, 2] = k1[2]
K1[1, 2] = k1[3]
D0 = np.array(pair[6: 8]).astype(float)
D1 = np.array(pair[12: 14]).astype(float)
q_0to1 = np.array(pair[14: 18]).astype(float)
t_0to1 = np.array(pair[18:]).astype(float)
T_0to1 = quaternion_matrix(q_0to1)
T_0to1[0: 3, 3] = t_0to1
# # Scale the intrinsics to resized image.
# K0 = scale_intrinsics(K0, scales0)
# K1 = scale_intrinsics(K1, scales1)
if opt.loransac:
# LORANSAC
th = 2.0
n_iter = 20000
mask = Loransac(deepcopy(mkpts0), deepcopy(mkpts1), K0, K1, th, n_iter, D0, D1)
timer.update('ransac')
else:
mask = np.ones((len(mkpts0),), dtype=bool)
mkpts0 = mkpts0[mask]
mkpts1 = mkpts1[mask]
mconf = mconf[mask]
epi_errs = compute_epipolar_error(mkpts0, mkpts1, T_0to1, K0, K1, D0, D1)
correct = epi_errs < 5e-4
num_correct = np.sum(correct)
precision = np.mean(correct) if len(correct) > 0 else 0
matching_score = num_correct / min(len(kpts0), len(kpts1)) if min(len(kpts0), len(kpts1)) > 0 else 0
thresh = 1. # In pixels relative to resized image size.
ret = estimate_pose(mkpts0, mkpts1, K0, K1, thresh, D0=D0, D1=D1)
if ret is None:
err_t, err_R = np.inf, np.inf
else:
R, t, inliers = ret
err_t, err_R = compute_pose_error(T_0to1, R, t)
# Write the evaluation results to disk.
out_eval = {'error_t': err_t,
'error_R': err_R,
'precision': precision,
'matching_score': matching_score,
'num_correct': num_correct,
'epipolar_errors': epi_errs}
np.savez(str(eval_path), **out_eval)
timer.update('eval')
# Reduce visualize image data.
if do_viz and i % (opt.step_size * 100) == 0:
# Visualize the matches.
color = cm.jet(mconf)
text = [
'SuperGlue',
'Keypoints: {}:{}'.format(len(kpts0), len(kpts1)),
'Matches: {}'.format(len(mkpts0)),
]
# Display extra parameter info.
# k_thresh = matching.superpoint.config['keypoint_threshold']
# m_thresh = matching.superglue.config['match_threshold']
small_text = [
# 'Keypoint Threshold: {:.4f}'.format(k_thresh),
# 'Match Threshold: {:.2f}'.format(m_thresh),
'Image Pair: {}:{}'.format(stem0, stem1),
]
make_matching_plot(
image0, image1, kpts0, kpts1, mkpts0, mkpts1, color,
text, viz_path, opt.show_keypoints,
opt.fast_viz, opt.opencv_display, 'Matches', small_text)
timer.update('viz_match')
if do_viz_eval and i % (opt.step_size * 100) == 0:
# Visualize the evaluation results for the image pair.
color = np.clip((epi_errs - 0) / (1e-3 - 0), 0, 1)
color = error_colormap(1 - color)
deg, delta = ' deg', 'Delta '
if not opt.fast_viz:
deg, delta = '°', '$\\Delta$'
e_t = 'FAIL' if np.isinf(err_t) else '{:.1f}{}'.format(err_t, deg)
e_R = 'FAIL' if np.isinf(err_R) else '{:.1f}{}'.format(err_R, deg)
text = [
'SuperGlue',
'{}R: {}'.format(delta, e_R), '{}t: {}'.format(delta, e_t),
'inliers: {}/{}'.format(num_correct, (matches > -1).sum()),
]
# Display extra parameter info (only works with --fast_viz).
# k_thresh = matching.superpoint.config['keypoint_threshold']
# m_thresh = matching.superglue.config['match_threshold']
small_text = [
# 'Keypoint Threshold: {:.4f}'.format(k_thresh),
# 'Match Threshold: {:.2f}'.format(m_thresh),
'Image Pair: {}:{}'.format(stem0, stem1),
]
make_matching_plot(
image0, image1, kpts0, kpts1, mkpts0,
mkpts1, color, text, viz_eval_path,
opt.show_keypoints, opt.fast_viz,
opt.opencv_display, 'Relative Pose', small_text)
timer.update('viz_eval')
timer.print('Finished pair {:5} of {:5}'.format(i, len(pairs)))
if opt.eval:
# Collate the results into a final table and print to terminal.
pose_errors = []
precisions = []
matching_scores = []
for i, pair in enumerate(pairs):
if i % opt.step_size != 0:
continue
name0, name1 = pair[:2]
stem0, stem1 = Path(name0).stem, Path(name1).stem
eval_path = output_evals_dir / \
'{}_{}_evaluation.npz'.format(stem0, stem1)
results = np.load(eval_path)
pose_error = np.maximum(results['error_t'], results['error_R'])
pose_errors.append(pose_error)
precisions.append(results['precision'])
matching_scores.append(results['matching_score'])
thresholds = [5, 10, 20]
aucs = pose_auc(pose_errors, thresholds)
aucs = [100. * yy for yy in aucs]
prec = 100. * np.mean(precisions)
ms = 100. * np.mean(matching_scores)
print('Evaluation Results (mean over {} pairs):'.format(len(pairs)))
print('AUC@5\t AUC@10\t AUC@20\t Prec\t MScore\t')
print('{:.2f}\t {:.2f}\t {:.2f}\t {:.2f}\t {:.2f}\t'.format(
aucs[0], aucs[1], aucs[2], prec, ms))
print("Average number of keypoints:")
print('Mean\t Max\t Min\t Deviation\t')
print('{:.2f}\t {}\t {}\t {:.2f}\t'.format(np.mean(all_kpts_num), np.max(all_kpts_num), np.min(all_kpts_num), np.std(all_kpts_num)))