forked from magicleap/SuperGluePretrainedNetwork
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmatch_pairs_compare.py
246 lines (212 loc) · 10.3 KB
/
match_pairs_compare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from pathlib import Path
import argparse
import random
import numpy as np
import matplotlib.cm as cm
import torch
import cv2
from models.utils import (quaternion_matrix, compute_pose_error, compute_epipolar_error,
estimate_pose, make_matching_plot,
error_colormap, AverageTimer, pose_auc, make_distributed_plot)
# for find hloc
import sys
import os
sys.path.insert(1, os.path.abspath(os.path.join(os.getcwd(), "../..")))
from hloc.utils.hypermap_database import HyperMapDatabase, image_ids_to_pair_id
# from hloc.utils.hfnet_database import HFNetDatabase
torch.set_grad_enabled(False)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Image pair matching and pose evaluation with hfnet',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--input_root_dir', type=str, default='/persist_dataset/mower/B6_2021-06-30-10-45_all_2021-06-30-12-20_sweep_2021-07-14-06-10-39/',
help='Path to the root of datasets.')
parser.add_argument(
'--input_pairs', type=str, default='test/reconstruction2/model/mis_match_feature_pairs.txt',
help='Path to the list of image pairs')
parser.add_argument(
'--input_dir', type=str, default='sensors/records_data/map',
help='Path to the directory that contains the images')
parser.add_argument(
'--database', type=str, default='test/reconstruction2/',
help='Path to the hfnet.db & hypermap.db')
parser.add_argument(
'--output_dir', type=str, default='test/reconstruction2/filtered/',
help='Path to the directory in which the .npz results and optionally,'
'the visualization images are written')
parser.add_argument(
'--max_length', type=int, default=-1,
help='Maximum number of pairs to evaluate')
parser.add_argument(
'--viz', action='store_true',
help='Visualize the matches and dump the plots')
parser.add_argument(
'--eval', action='store_true',
help='Perform the evaluation'
' (requires ground truth pose and intrinsics)')
parser.add_argument(
'--fast_viz', action='store_true',
help='Use faster image visualization with OpenCV instead of Matplotlib')
parser.add_argument(
'--cache', action='store_true',
help='Skip the pair if output .npz files are already found')
parser.add_argument(
'--show_keypoints', action='store_true',
help='Plot the keypoints in addition to the matches')
parser.add_argument(
'--viz_extension', type=str, default='jpg', choices=['jpg', 'png', 'pdf'],
help='Visualization file extension. Use pdf for highest-quality.')
parser.add_argument(
'--opencv_display', action='store_true',
help='Visualize via OpenCV before saving output images')
parser.add_argument(
'--shuffle', action='store_true',
help='Shuffle ordering of pairs before processing')
parser.add_argument(
'--step_size', type=int, default=1,
help='Set the step size of the pair to reduce the amount of '
'test image-pairs and visualize data.')
# parser.add_argument(
# '--eval_R_err', action='store_true',
# help='.')
# parser.add_argument(
# '--eval_t_err', action='store_true',
# help='.')
opt = parser.parse_args()
print(opt)
assert not (opt.opencv_display and not opt.viz), 'Must use --viz with --opencv_display'
assert not (opt.opencv_display and not opt.fast_viz), 'Cannot use --opencv_display without --fast_viz'
assert not (opt.fast_viz and not opt.viz), 'Must use --viz with --fast_viz'
assert not (opt.fast_viz and opt.viz_extension == 'pdf'), 'Cannot use pdf extension with --fast_viz'
with open(opt.input_root_dir + opt.input_pairs, 'r') as f:
pairs = [l.split() for l in f.readlines()]
if opt.max_length > -1:
pairs = pairs[0:np.min([len(pairs), opt.max_length])]
if opt.shuffle:
random.Random(0).shuffle(pairs)
if opt.eval:
if not all([len(p) == 21 for p in pairs]):
raise ValueError(
'All pairs should have ground truth info for evaluation.'
'File \"{}\" needs 21 valid entries per row'.format(opt.input_pairs))
# Create the output directories if they do not exist already.
input_dir = Path(opt.input_root_dir + opt.input_dir)
print('Looking for data in directory \"{}\"'.format(input_dir))
dump_dir = Path(opt.input_root_dir + opt.output_dir)
dump_dir.mkdir(exist_ok=True, parents=True)
# output_matches_dir = Path.joinpath(dump_dir, "data", "matches")
# cache match_pairs_hypermap
output_matches_dir = Path.joinpath(dump_dir, "data")
output_matches_dir.mkdir(exist_ok=True, parents=True)
print('Will write matches to directory \"{}\"'.format(output_matches_dir))
output_evals_dir = Path.joinpath(dump_dir, "data", "evals")
output_evals_dir.mkdir(exist_ok=True, parents=True)
vis_dir = Path.joinpath(dump_dir, "vis_mis_feature_pairs")
vis_dir.mkdir(exist_ok=True, parents=True)
if opt.eval:
print('Will write evaluation results',
'to directory \"{}\"'.format(output_evals_dir))
if opt.viz:
print('Will write visualization images to',
'directory \"{}\"'.format(vis_dir))
# Load hfnet.db and hypermap.db
hypermap_database0 = str(Path(opt.input_root_dir + opt.database) / "bak/hypermap-E.db")
# hfnet_database = str(Path(opt.input_root_dir + opt.database) / "hfnet.db")
hypermap_database1 = str(Path(opt.input_root_dir + opt.database) / "hypermap.db")
hypermap_cursor0 = HyperMapDatabase.connect(hypermap_database0)
hypermap_cursor1 = HyperMapDatabase.connect(hypermap_database1)
# hfnet_cursor = HFNetDatabase.connect(hfnet_database)
# statistics average keypoints num
all_kpts_num = []
timer = AverageTimer(newline=True)
for i, pair in enumerate(pairs):
# Reduce test image-pairs.
if i % opt.step_size != 0:
continue
name0, name1 = pair[:2]
stem0, stem1 = Path(name0).stem, Path(name1).stem
matches_path = output_matches_dir / '{}_{}_matches.npz'.format(stem0, stem1)
nn_viz_path = vis_dir / '{}_{}_nn_filter_matches.{}'.format(stem0, stem1, opt.viz_extension)
sfm_viz_path = vis_dir / '{}_{}_sfm_filter_matches.{}'.format(stem0, stem1, opt.viz_extension)
# Handle --cache logic.
do_match = True
do_viz = opt.viz
# Load the image pair.
image0 = cv2.imread(str(input_dir / name0), cv2.IMREAD_GRAYSCALE)
image1 = cv2.imread(str(input_dir / name1), cv2.IMREAD_GRAYSCALE)
if image0 is None or image1 is None:
print('Problem reading image pair: {} {}'.format(
input_dir / name0, input_dir / name1))
exit(1)
timer.update('load_image')
if do_match:
# Perform the matching.
image0_id = hypermap_cursor0.read_image_id_from_name(name0)
image1_id = hypermap_cursor0.read_image_id_from_name(name1)
pair_id = image_ids_to_pair_id(image0_id, image1_id)
raw_matches = hypermap_cursor0.read_matches_from_pair_id(pair_id)
filter_matches = hypermap_cursor1.read_matches_from_pair_id(pair_id)
kpts0 = hypermap_cursor0.read_keypoints_from_image_id(image0_id)[:, 0:2]
kpts1 = hypermap_cursor0.read_keypoints_from_image_id(image1_id)[:, 0:2]
# matches = np.full((max(np.shape(kpts0)[0], np.shape(kpts1)[0]),), -1)
matches0 = np.full((np.shape(kpts0)[0],), -1)
matches1 = np.full((np.shape(kpts0)[0],), -1)
if raw_matches is not None:
for match in raw_matches:
matches0[match[0]] = match[1]
if filter_matches is not None:
for match in filter_matches:
matches1[match[0]] = match[1]
timer.update('matcher')
all_kpts_num.append((kpts0.shape[0] + kpts1.shape[0]) // 2)
# Write the matches to disk.
out_matches = {'keypoints0': kpts0, 'keypoints1': kpts1,
'matches_nn': matches0, 'matches_filter':matches1}
np.savez(str(matches_path), **out_matches)
# Keep the matching keypoints.
# valid_nn = matches0 > -1
# valid_filter = matches1 > -1
nn_filter = (matches0 == -1) & (matches1 > -1)
sfm_filter = (matches0 > -1) & (matches1 == -1)
mkpts0_nn = kpts0[nn_filter]
mkpts1_nn = kpts1[matches1[nn_filter]]
mconf_nn = np.full((np.shape(mkpts0_nn)[0],), 0.1)
mkpts0_sfm = kpts0[sfm_filter]
mkpts1_sfm = kpts1[matches0[sfm_filter]]
mconf_sfm = np.full((np.shape(mkpts0_sfm)[0],), 0.1)
# Reduce visualize image data.
if do_viz and i % (opt.step_size * 1000) == 0:
# Visualize the nn filtered matches.
color_nn = cm.jet(mconf_nn)
text = [
'global filtered & nn pass',
'Keypoints: {}:{}'.format(len(kpts0), len(kpts1)),
'Matches: {}'.format(len(mkpts0_nn)),
]
# Display extra parameter info.
small_text = [
'Image Pair: {}:{}'.format(stem0, stem1),
]
make_matching_plot(
image0, image1, kpts0, kpts1, mkpts0_nn, mkpts1_nn, color_nn,
text, nn_viz_path, opt.show_keypoints,
opt.fast_viz, opt.opencv_display, 'Matches', small_text)
# Visualize the global sfm filtered matches.
color_sfm = cm.jet(mconf_sfm)
text = [
'nn filtered & global pass',
'Keypoints: {}:{}'.format(len(kpts0), len(kpts1)),
'Matches: {}'.format(len(mkpts0_sfm)),
]
# Display extra parameter info.
small_text = [
'Image Pair: {}:{}'.format(stem0, stem1),
]
make_matching_plot(
image0, image1, kpts0, kpts1, mkpts0_sfm, mkpts1_sfm, color_sfm,
text, sfm_viz_path, opt.show_keypoints,
opt.fast_viz, opt.opencv_display, 'Matches', small_text)
timer.update('viz_match')
timer.print('Finished pair {:5} of {:5}'.format(i, len(pairs)))