forked from magicleap/SuperGluePretrainedNetwork
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo_sequential_3d.py
executable file
·468 lines (414 loc) · 17.3 KB
/
demo_sequential_3d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
#! /usr/bin/env python3
from pathlib import Path
import argparse
import cv2
import matplotlib.cm as cm
import torch
import numpy as np
# import pyquaternion
from scipy.spatial.transform import Rotation as sRot
import pycolmap
import json
from models.matching import Matching
from models.utils import (AverageTimer, estimate_pose, angle_error_mat,
make_matching_plot, to_homogeneous, read_image)
torch.set_grad_enabled(False)
def write_ply(path, pts, colors):
assert len(pts) == len(colors)
invalid = np.isnan(pts).any(1)
print(f'Writing PLY file to {path}')
print(f'#invalid: {invalid.sum()}, {invalid.mean()}%')
pts = pts[~invalid]
colors = colors[~invalid]
txt = 'ply\nformat ascii 1.0\n'
txt += f'element vertex {len(pts)}\n'
txt += 'property float x\nproperty float y\nproperty float z\n'
txt += 'property uchar red\nproperty uchar green\nproperty uchar blue\n'
txt += 'end_header'
for p, c in zip(pts, colors):
c = np.round(c[:3] * 255).astype(np.uint8)
txt += '\n' + ' '.join(map(str, p.tolist() + c.tolist()))
with open(path, 'w') as f:
f.write(txt)
def transform44(l):
"""
Generate a 4x4 homogeneous transformation matrix from a 3D point and unit quaternion.
Input:
l -- tuple consisting of (stamp,tx,ty,tz,qx,qy,qz,qw) where
(tx,ty,tz) is the 3D position and (qx,qy,qz,qw) is the unit quaternion.
Output:
matrix -- 4x4 homogeneous transformation matrix
"""
t = l[1:4]
q = np.array(l[4:8], dtype=np.float64, copy=True)
nq = np.dot(q, q)
if nq < np.finfo(float).eps * 4.0:
return np.array((
( 1.0, 0.0, 0.0, t[0])
( 0.0, 1.0, 0.0, t[1])
( 0.0, 0.0, 1.0, t[2])
( 0.0, 0.0, 0.0, 1.0)
), dtype=np.float64)
q *= np.sqrt(2.0 / nq)
q = np.outer(q, q)
return np.array((
(1.0-q[1, 1]-q[2, 2], q[0, 1]-q[2, 3], q[0, 2]+q[1, 3], t[0]),
( q[0, 1]+q[2, 3], 1.0-q[0, 0]-q[2, 2], q[1, 2]-q[0, 3], t[1]),
( q[0, 2]-q[1, 3], q[1, 2]+q[0, 3], 1.0-q[0, 0]-q[1, 1], t[2]),
( 0.0, 0.0, 0.0, 1.0)
), dtype=np.float64)
def estimate_absolute_pose(kpts_2d, kpts_3d, K, thresh):
if len(kpts_2d) < 4:
return None
cfg = {
'model': 'SIMPLE_PINHOLE',
'width': 640,
'height': 480,
'params': [K[0, 0], K[0, 2], K[1, 2]]
}
ret = pycolmap.absolute_pose_estimation(
kpts_2d, kpts_3d, cfg, thresh)
qw, qx, qy, qz = ret['qvec']
R = sRot.from_quat([qx, qy, qz, qw]).as_matrix()
t = ret['tvec']
T = np.eye(4)
T[:3, :3] = R
T[:3, 3] = t
T = np.linalg.inv(T)
R, t = T[:3, :3], T[:3, 3]
ret = (R, t, np.array(ret['inliers'])) if ret['success'] else None
return ret
kpts_2d = kpts_2d.astype(np.float32).reshape((-1, 1, 2))
kpts_3d = kpts_3d.astype(np.float32).reshape((-1, 1, 3))
success, R_vec, t, inlier_idx = cv2.solvePnPRansac(
kpts_3d, kpts_2d, K, np.array([0., 0, 0, 0]),
iterationsCount=5000, reprojectionError=thresh,
flags=cv2.SOLVEPNP_P3P)
if success:
inliers = np.zeros(len(kpts_2d), np.bool)
inliers[inlier_idx[:, 0]] = True
ret, R_vec, t = cv2.solvePnP(
kpts_3d[inliers], kpts_2d[inliers], K,
np.array([0., 0, 0, 0]), rvec=R_vec, tvec=t,
useExtrinsicGuess=True, flags=cv2.SOLVEPNP_ITERATIVE)
assert ret
query_T_w = np.eye(4)
query_T_w[:3, :3] = cv2.Rodrigues(R_vec)[0]
query_T_w[:3, 3] = t[:, 0]
w_T_query = np.linalg.inv(query_T_w)
ret = (w_T_query[:3, :3], w_T_query[:3, 3], inliers)
else:
ret = None
return ret
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='SuperGlue demo',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--input', type=str, default='0',
help='ID of a USB webcam, URL of an IP camera, '
'or path to an image directory or movie file')
parser.add_argument(
'--output_dir', type=str, default=None,
help='Directory where to write output frames (If None, no output)')
parser.add_argument(
'--image_glob', type=str, nargs='+', default=['*.png', '*.jpg', '*.jpeg'],
help='Glob if a directory of images is specified')
parser.add_argument(
'--skip', type=int, default=1,
help='Images to skip if input is a movie or directory')
parser.add_argument(
'--max_length', type=int, default=1000000,
help='Maximum length if input is a movie or directory')
parser.add_argument(
'--resize', type=int, nargs='+', default=[640, 480],
help='Resize the input image before running inference. If two numbers, '
'resize to the exact dimensions, if one number, resize the max '
'dimension, if -1, do not resize')
parser.add_argument(
'--focal', type=float, required=True)
parser.add_argument(
'--superglue', choices={'indoor', 'outdoor'}, default='indoor',
help='SuperGlue weights')
parser.add_argument(
'--max_keypoints', type=int, default=-1,
help='Maximum number of keypoints detected by Superpoint'
' (\'-1\' keeps all keypoints)')
parser.add_argument(
'--keypoint_threshold', type=float, default=0.005,
help='SuperPoint keypoint detector confidence threshold')
parser.add_argument(
'--nms_radius', type=int, default=4,
help='SuperPoint Non Maximum Suppression (NMS) radius'
' (Must be positive)')
parser.add_argument(
'--sinkhorn_iterations', type=int, default=50,
help='Number of Sinkhorn iterations performed by SuperGlue')
parser.add_argument(
'--match_threshold', type=float, default=0.2,
help='SuperGlue match threshold')
parser.add_argument(
'--show_keypoints', action='store_true',
help='Show the detected keypoints')
# parser.add_argument(
# '--no_display', action='store_true',
# help='Do not display images to screen. Useful if running remotely')
parser.add_argument(
'--force_cpu', action='store_true',
help='Force pytorch to run in CPU mode.')
opt = parser.parse_args()
print(opt)
if opt.output_dir is not None:
print('==> Will write outputs to {}'.format(opt.output_dir))
Path(opt.output_dir).mkdir(exist_ok=True, parents=True)
if len(opt.resize) == 2 and opt.resize[1] == -1:
opt.resize = opt.resize[0:1]
if len(opt.resize) == 2:
print('Will resize to {}x{} (WxH)'.format(
opt.resize[0], opt.resize[1]))
elif len(opt.resize) == 1 and opt.resize[0] > 0:
print('Will resize max dimension to {}'.format(opt.resize[0]))
elif len(opt.resize) == 1:
print('Will not resize images')
else:
raise ValueError('Cannot specify more than two integers for --resize')
device = 'cuda' if torch.cuda.is_available() and not opt.force_cpu else 'cpu'
print('Running inference on device \"{}\"'.format(device))
config = {
'superpoint': {
'nms_radius': opt.nms_radius,
'keypoint_threshold': opt.keypoint_threshold,
'max_keypoints': opt.max_keypoints
},
'superglue': {
'weights': opt.superglue,
'sinkhorn_iterations': opt.sinkhorn_iterations,
'match_threshold': opt.match_threshold,
}
}
matching = Matching(config).eval().to(device)
keys = ['keypoints', 'scores', 'descriptors']
with open(Path(opt.input, 'rgb.txt'), 'r') as f:
frames = [i.split() for i in f.read().split('\n') if i and (i[0] != '#')]
frames = frames[::opt.skip][:opt.max_length]
with open(Path(opt.input, 'depth.txt'), 'r') as f:
depths = {}
for i in f.read().split('\n'):
if i and (i[0] != '#'):
ts, path = i.split(' ')
depths[float(ts)] = path
with open(Path(opt.input, 'groundtruth.txt'), 'r') as f:
poses = {}
for i in f.read().split('\n'):
if i and (i[0] != '#'):
tstq = i.split()
ts, t, q = tstq[0], tstq[1:4], tstq[4:]
# q = np.array(list(map(float, q)))
# T = np.eye(4)
# T[:3, 3] = np.array(list(map(float, t)))
# T[:3, :3] = pyquaternion.Quaternion(q).rotation_matrix
# poses[float(ts)] = T
T44 = transform44(i.split())
poses[float(ts)] = T44
# if (j % 500) == 0:
# print(T, T44, T-T44)
# j += 1
def associate_ts(ts, dic):
all_ts = np.array(list(dic.keys()))
diff = np.abs(float(ts) - all_ts)
return all_ts[np.argmin(diff)]
def read_frame(i):
ts, path = frames[i]
frame, inp, scales = read_image(
str(Path(opt.input, path)), device, opt.resize, 0, False)
ts_depth = associate_ts(ts, depths)
depth = cv2.imread(
str(Path(opt.input, depths[ts_depth])), cv2.IMREAD_ANYDEPTH)
depth = depth.astype(np.float) / 5000
assert depth.shape[:2] == frame.shape[:2]
return frame, inp, depth, scales
frame, frame_tensor, depth, scales = read_frame(0)
h, w = frame.shape[:2]
K = np.eye(3)
K[0, 0] = opt.focal / scales[0]
K[1, 1] = opt.focal / scales[1]
K[0, 2] = w / 2
K[1, 2] = h / 2
def backproject(depth, pts_2d, T):
d = depth[tuple(np.round(pts_2d).astype(int).T)[::-1]]
valid = d > 0
pts_3d = (to_homogeneous(pts_2d) @ np.linalg.inv(K).T)*d[:, None]
pts_3d = (pts_3d @ T[:3, :3].T) + T[:3, 3][None]
pts_3d[~valid] = None
return pts_3d
all_pts_3d = []
all_pts_color = []
viz_poses = []
is_ref_frame = []
pred = matching.superpoint({'image': frame_tensor})
pred = {k+'1': v for k, v in pred.items()}
def update_reference(i):
last_data = {k+'0': pred[k+'1'] for k in keys}
last_data['image0'] = frame_tensor
last_frame = frame
last_id = i
num = len(last_data['keypoints0'][0])
colors = cm.hsv(np.random.rand(num))
T = poses[associate_ts(frames[i][0], poses)]
pts_3d = backproject(
depth, last_data['keypoints0'][0].cpu().numpy(), T)
write_ply(
Path(opt.output_dir, f'model_{i}.ply'), pts_3d, colors)
return last_data, last_frame, last_id, colors, pts_3d, T
last_data, last_frame, last_id, colors, pts_3d, last_T = update_reference(0)
all_pts_3d.append(pts_3d)
all_pts_color.append(colors)
viz_poses.append(last_T)
is_ref_frame.append(True)
# frame_tensor = frame2tensor(frame, device)
# last_data = matching.superpoint({'image': frame_tensor})
# last_data = {k+'0': last_data[k] for k in keys}
# last_data['image0'] = frame_tensor
# last_frame = frame
# last_image_id = 0
# kp_colors = cm.hsv(np.random.rand(len(last_data['keypoints0'][0])))
# last_data = {k+'0': pred[k+'1'] for k in keys}
# last_data['image0'] = frame_tensor
# last_frame = frame
# last_image_id = (vs.i - 1)
# num = len(last_data['keypoints0'][0])
# kp_colors = cm.hsv(np.random.rand(len(last_data['keypoints0'][0])))
timer = AverageTimer()
for i in range(1, len(frames)):
frame, frame_tensor, depth, scales = read_frame(i)
# while True:
# frame, ret = vs.next_frame()
# if not ret:
# print('Finished demo_sequential.py')
# break
timer.update('data')
# stem0, stem1 = last_image_id, vs.i - 1
stem0, stem1 = last_id, i
pred = matching({**last_data, 'image1': frame_tensor})
kpts0 = last_data['keypoints0'][0].cpu().numpy()
kpts1 = pred['keypoints1'][0].cpu().numpy()
matches = pred['matches0'][0].cpu().numpy()
confidence = pred['matching_scores0'][0].cpu().numpy()
timer.update('forward')
valid = matches > -1
mkpts0 = kpts0[valid]
mkpts1 = kpts1[matches[valid]]
color = colors[valid]
mkpts_3d = pts_3d[valid]
has_depth = ~np.any(np.isnan(mkpts_3d), 1)
mkpts_3d = mkpts_3d[has_depth]
mkpts_2d = mkpts1[has_depth]
ret = estimate_absolute_pose(mkpts_2d, mkpts_3d, K, 4)
# ret = estimate_pose(mkpts0, mkpts1, K, K, 1.)
text = [
'SuperGlue',
'Matches: {}'.format(len(mkpts0))
]
small_text = [
'Image Pair: {:06}:{:06}'.format(stem0, stem1),
]
if opt.output_dir is not None:
stem = 'matches_{:06}_{:06}'.format(stem0, stem1)
out_file = str(Path(opt.output_dir, stem + '.png'))
print('\nWriting image to {}'.format(out_file))
else:
out_file = None
if (stem1 - stem0) == 1:
line_alpha = 0.8
line_width = 1.5
else:
line_alpha = 0.2
line_width = 0
out = make_matching_plot(
last_frame, frame, kpts0, kpts1, mkpts0, mkpts1, color, text,
path=out_file, show_keypoints=opt.show_keypoints,
small_text=small_text, lw=line_width, psm=15, lalpha=line_alpha)
fail = True
if ret is not None:
R, t, inliers = ret
num_inliers = np.sum(inliers.astype(int))
if num_inliers > 10:
fail = False
T_gt = poses[associate_ts(frames[i][0], poses)]
dt = np.linalg.norm(t - T_gt[:3, 3])
dr = angle_error_mat(R, T_gt[:3, :3])
print(f'dt {dt:.3f}, dr {dr:.3f}, # {num_inliers}')
if dt > 0.22:
fail = True
if fail:
print('Pose estimation failed, restart')
# last_data = {k+'0': pred[k+'1'] for k in keys}
# last_data['image0'] = frame_tensor
# last_frame = frame
# last_image_id = (vs.i - 1)
# num = len(last_data['keypoints0'][0])
# kp_colors = cm.hsv(np.random.rand(len(last_data['keypoints0'][0])))
last_data, last_frame, last_id, colors, pts_3d, last_T = update_reference(i)
all_pts_3d.append(pts_3d)
all_pts_color.append(colors)
viz_poses.append(last_T)
is_ref_frame.append(True)
else:
T = np.eye(4)
T[:3, :3] = R
T[:3, 3] = t
viz_poses.append(T)
is_ref_frame.append(False)
# if not opt.no_display:
# cv2.imshow('SuperGlue matches', out)
# key = chr(cv2.waitKey(1) & 0xFF)
# if key == 'q':
# vs.cleanup()
# print('Exiting (via q) demo_superglue.py')
# break
# elif key == 'n': # set the current frame as anchor
# last_data = {k+'0': pred[k+'1'] for k in keys}
# last_data['image0'] = frame_tensor
# last_frame = frame
# last_image_id = (vs.i - 1)
# elif key in ['e', 'r']:
# # Increase/decrease keypoint threshold by 10% each keypress.
# d = 0.1 * (-1 if key == 'e' else 1)
# matching.superpoint.config['keypoint_threshold'] = min(max(
# 0.0001, matching.superpoint.config['keypoint_threshold']*(1+d)), 1)
# print('\nChanged the keypoint threshold to {:.4f}'.format(
# matching.superpoint.config['keypoint_threshold']))
# elif key in ['d', 'f']:
# # Increase/decrease match threshold by 0.05 each keypress.
# d = 0.05 * (-1 if key == 'd' else 1)
# matching.superglue.config['match_threshold'] = min(max(
# 0.05, matching.superglue.config['match_threshold']+d), .95)
# print('\nChanged the match threshold to {:.2f}'.format(
# matching.superglue.config['match_threshold']))
# elif key == 'k':
# opt.show_keypoints = not opt.show_keypoints
timer.update('viz')
timer.print()
# if opt.output_dir is not None:
# #stem = 'matches_{:06}_{:06}'.format(last_image_id, vs.i-1)
# stem = 'matches_{:06}_{:06}'.format(stem0, stem1)
# out_file = str(Path(opt.output_dir, stem + '.png'))
# print('\nWriting image to {}'.format(out_file))
# cv2.imwrite(out_file, out)
# cv2.destroyAllWindows()
# vs.cleanup()
if opt.output_dir is not None:
viz_cam_centers = np.stack([T[:3, 3] for T in viz_poses], 0)
viz_cam_colors = np.stack([(1, 0, 0, 1) if i else (0, 0, 0, 1) for i in is_ref_frame], 0)
all_pts_3d += [viz_cam_centers]
all_pts_color += [viz_cam_colors]
write_ply(
Path(opt.output_dir, 'model_all.ply'),
np.concatenate(all_pts_3d, 0),
np.concatenate(all_pts_color, 0))
with open(Path(opt.output_dir, 'trajectory.json'), 'w') as f:
data = {
'poses': [T.tolist() for T in viz_poses],
'is_ref': is_ref_frame,
}
json.dump(data, f)