forked from cvg/Hierarchical-Localization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathd2net.py
54 lines (45 loc) · 1.73 KB
/
d2net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import sys
from pathlib import Path
import subprocess
import torch
from ..utils.base_model import BaseModel
d2net_path = Path(__file__).parent / '../../third_party/d2net'
sys.path.append(str(d2net_path))
from lib.model_test import D2Net as _D2Net
from lib.pyramid import process_multiscale
class D2Net(BaseModel):
default_conf = {
'model_name': 'd2_tf.pth',
'checkpoint_dir': d2net_path / 'models',
'use_relu': True,
'multiscale': False,
}
required_inputs = ['image']
def _init(self, conf):
model_file = conf['checkpoint_dir'] / conf['model_name']
if not model_file.exists():
model_file.parent.mkdir(exist_ok=True)
cmd = ['wget', 'https://dsmn.ml/files/d2-net/'+conf['model_name'],
'-O', str(model_file)]
subprocess.run(cmd, check=True)
self.net = _D2Net(
model_file=model_file,
use_relu=conf['use_relu'],
use_cuda=False)
def _forward(self, data):
image = data['image']
image = image.flip(1) # RGB -> BGR
norm = image.new_tensor([103.939, 116.779, 123.68])
image = (image * 255 - norm.view(1, 3, 1, 1)) # caffe normalization
if self.conf['multiscale']:
keypoints, scores, descriptors = process_multiscale(
image, self.net)
else:
keypoints, scores, descriptors = process_multiscale(
image, self.net, scales=[1])
keypoints = keypoints[:, [1, 0]] # (x, y) and remove the scale
return {
'keypoints': torch.from_numpy(keypoints)[None],
'scores': torch.from_numpy(scores)[None],
'descriptors': torch.from_numpy(descriptors.T)[None],
}