-
Notifications
You must be signed in to change notification settings - Fork 61
/
Copy patheiquadprog.h
623 lines (529 loc) · 15.9 KB
/
eiquadprog.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
#ifndef _EIGEN_QUADSOLVE_HPP_
#define _EIGEN_QUADSOLVE_HPP_
/*
FILE eiquadprog.hh
NOTE: this is a modified of uQuadProg++ package, working with Eigen data structures.
uQuadProg++ is itself a port made by Angelo Furfaro of QuadProg++ originally developed by
Luca Di Gaspero, working with ublas data structures.
The quadprog_solve() function implements the algorithm of Goldfarb and Idnani
for the solution of a (convex) Quadratic Programming problem
by means of a dual method.
The problem is in the form:
min 0.5 * x G x + g0 x
s.t.
CE^T x + ce0 = 0
CI^T x + ci0 >= 0
The matrix and vectors dimensions are as follows:
G: n * n
g0: n
CE: n * p
ce0: p
CI: n * m
ci0: m
x: n
The function will return the cost of the solution written in the x vector or
std::numeric_limits::infinity() if the problem is infeasible. In the latter case
the value of the x vector is not correct.
References: D. Goldfarb, A. Idnani. A numerically stable dual method for solving
strictly convex quadratic programs. Mathematical Programming 27 (1983) pp. 1-33.
Notes:
1. pay attention in setting up the vectors ce0 and ci0.
If the constraints of your problem are specified in the form
A^T x = b and C^T x >= d, then you should set ce0 = -b and ci0 = -d.
2. The matrix G is modified within the function since it is used to compute
the G = L^T L cholesky factorization for further computations inside the function.
If you need the original matrix G you should make a copy of it and pass the copy
to the function.
The author will be grateful if the researchers using this software will
acknowledge the contribution of this modified function and of Di Gaspero's
original version in their research papers.
LICENSE
Copyright (2011) Benjamin Stephens
Copyright (2010) Gael Guennebaud
Copyright (2008) Angelo Furfaro
Copyright (2006) Luca Di Gaspero
This file is a porting of QuadProg++ routine, originally developed
by Luca Di Gaspero, exploiting uBlas data structures for vectors and
matrices instead of native C++ array.
uquadprog is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
uquadprog is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with uquadprog; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <Eigen/Core>
#include <Eigen/Cholesky>
namespace Eigen {
// namespace internal {
template<typename Scalar>
inline Scalar distance(Scalar a, Scalar b)
{
Scalar a1, b1, t;
a1 = std::abs(a);
b1 = std::abs(b);
if (a1 > b1)
{
t = (b1 / a1);
return a1 * std::sqrt(1.0 + t * t);
}
else
if (b1 > a1)
{
t = (a1 / b1);
return b1 * std::sqrt(1.0 + t * t);
}
return a1 * std::sqrt(2.0);
}
// }
inline void compute_d(VectorXd &d, const MatrixXd& J, const VectorXd& np)
{
d = J.adjoint() * np;
}
inline void update_z(VectorXd& z, const MatrixXd& J, const VectorXd& d, int iq)
{
z = J.rightCols(z.size()-iq) * d.tail(d.size()-iq);
}
inline void update_r(const MatrixXd& R, VectorXd& r, const VectorXd& d, int iq)
{
r.head(iq)= R.topLeftCorner(iq,iq).triangularView<Upper>().solve(d.head(iq));
}
bool add_constraint(MatrixXd& R, MatrixXd& J, VectorXd& d, int& iq, double& R_norm);
void delete_constraint(MatrixXd& R, MatrixXd& J, VectorXi& A, VectorXd& u, int p, int& iq, int l);
/* solve_quadprog2 is used when the Cholesky decomposition of the G matrix is precomputed */
double solve_quadprog2(LLT<MatrixXd,Lower> &chol, double c1, VectorXd & g0,
const MatrixXd & CE, const VectorXd & ce0,
const MatrixXd & CI, const VectorXd & ci0,
VectorXd& x);
/* solve_quadprog is used for on-demand QP solving */
template <typename tA, typename tB, typename tC, typename tD, typename tE, typename tF, typename tG>
inline double solve_quadprog(MatrixBase<tA> & G, MatrixBase<tB> & g0,
const MatrixBase<tC> & CE, const MatrixBase<tD> & ce0,
const MatrixBase<tE> & CI, const MatrixBase<tF> & ci0,
MatrixBase<tG>& x){
LLT<MatrixXd,Lower> chol(G.cols());
double c1;
/* compute the trace of the original matrix G */
c1 = G.trace();
/* decompose the matrix G in the form LL^T */
chol.compute(G);
return solve_quadprog2(chol, c1, g0, CE, ce0, CI, ci0, x);
}
/* solve_quadprog2 is used for when the Cholesky decomposition of G is pre-computed */
template <typename tA, typename tB, typename tC, typename tD, typename tE, typename tF>
inline double solve_quadprog2(LLT<MatrixXd,Lower> &chol, double c1, MatrixBase<tA> & g0,
const MatrixBase<tB> & CE, const MatrixBase<tC> & ce0,
const MatrixBase<tD> & CI, const MatrixBase<tE> & ci0,
MatrixBase<tF>& x)
{
int i, j, k, l; /* indices */
int ip, me, mi;
int n=g0.size();
int p=CE.cols();
int m=CI.cols();
MatrixXd R(g0.size(),g0.size()), J(g0.size(),g0.size());
VectorXd s(m+p), z(n), r(m + p), d(n), np(n), u(m + p);
VectorXd x_old(n), u_old(m + p);
double f_value, psi, c2, sum, ss, R_norm;
const double inf = std::numeric_limits<double>::infinity();
double t, t1, t2; /* t is the step length, which is the minimum of the partial step length t1
* and the full step length t2 */
VectorXi A(m + p), A_old(m + p), iai(m + p), iaexcl(m+p);
int q;
int iq, iter = 0;
me = p; /* number of equality constraints */
mi = m; /* number of inequality constraints */
q = 0; /* size of the active set A (containing the indices of the active constraints) */
/*
* Preprocessing phase
*/
/* initialize the matrix R */
d.setZero();
R.setZero();
R_norm = 1.0; /* this variable will hold the norm of the matrix R */
/* compute the inverse of the factorized matrix G^-1, this is the initial value for H */
// J = L^-T
J.setIdentity();
J = chol.matrixU().solve(J);
c2 = J.trace();
#ifdef TRACE_SOLVER
print_matrix("J", J, n);
#endif
/* c1 * c2 is an estimate for cond(G) */
/*
* Find the unconstrained minimizer of the quadratic form 0.5 * x G x + g0 x
* this is a feasible point in the dual space
* x = G^-1 * g0
*/
x = chol.solve(g0);
x = -x;
/* and compute the current solution value */
f_value = 0.5 * g0.dot(x);
#ifdef TRACE_SOLVER
std::cerr << "Unconstrained solution: " << f_value << std::endl;
print_vector("x", x, n);
#endif
/* Add equality constraints to the working set A */
iq = 0;
for (i = 0; i < me; i++)
{
np = CE.col(i);
compute_d(d, J, np);
update_z(z, J, d, iq);
update_r(R, r, d, iq);
#ifdef TRACE_SOLVER
print_matrix("R", R, iq);
print_vector("z", z, n);
print_vector("r", r, iq);
print_vector("d", d, n);
#endif
/* compute full step length t2: i.e., the minimum step in primal space s.t. the contraint
becomes feasible */
t2 = 0.0;
if (std::abs(z.dot(z)) > std::numeric_limits<double>::epsilon()) // i.e. z != 0
t2 = (-np.dot(x) - ce0(i)) / z.dot(np);
x += t2 * z;
/* set u = u+ */
u(iq) = t2;
u.head(iq) -= t2 * r.head(iq);
/* compute the new solution value */
f_value += 0.5 * (t2 * t2) * z.dot(np);
A(i) = -i - 1;
if (!add_constraint(R, J, d, iq, R_norm))
{
// FIXME: it should raise an error
// Equality constraints are linearly dependent
return f_value;
}
}
/* set iai = K \ A */
for (i = 0; i < mi; i++)
iai(i) = i;
l1: iter++;
#ifdef TRACE_SOLVER
print_vector("x", x, n);
#endif
/* step 1: choose a violated constraint */
for (i = me; i < iq; i++)
{
ip = A(i);
iai(ip) = -1;
}
/* compute s(x) = ci^T * x + ci0 for all elements of K \ A */
ss = 0.0;
psi = 0.0; /* this value will contain the sum of all infeasibilities */
ip = 0; /* ip will be the index of the chosen violated constraint */
for (i = 0; i < mi; i++)
{
iaexcl(i) = 1;
sum = CI.col(i).dot(x) + ci0(i);
s(i) = sum;
psi += std::min(0.0, sum);
}
#ifdef TRACE_SOLVER
print_vector("s", s, mi);
#endif
if (std::abs(psi) <= mi * std::numeric_limits<double>::epsilon() * c1 * c2* 100.0)
{
/* numerically there are not infeasibilities anymore */
q = iq;
return f_value;
}
/* save old values for u, x and A */
u_old.head(iq) = u.head(iq);
A_old.head(iq) = A.head(iq);
x_old = x;
l2: /* Step 2: check for feasibility and determine a new S-pair */
for (i = 0; i < mi; i++)
{
if (s(i) < ss && iai(i) != -1 && iaexcl(i))
{
ss = s(i);
ip = i;
}
}
if (ss >= 0.0)
{
q = iq;
return f_value;
}
/* set np = n(ip) */
np = CI.col(ip);
/* set u = (u 0)^T */
u(iq) = 0.0;
/* add ip to the active set A */
A(iq) = ip;
#ifdef TRACE_SOLVER
std::cerr << "Trying with constraint " << ip << std::endl;
print_vector("np", np, n);
#endif
l2a:/* Step 2a: determine step direction */
/* compute z = H np: the step direction in the primal space (through J, see the paper) */
compute_d(d, J, np);
update_z(z, J, d, iq);
/* compute N* np (if q > 0): the negative of the step direction in the dual space */
update_r(R, r, d, iq);
#ifdef TRACE_SOLVER
std::cerr << "Step direction z" << std::endl;
print_vector("z", z, n);
print_vector("r", r, iq + 1);
print_vector("u", u, iq + 1);
print_vector("d", d, n);
print_ivector("A", A, iq + 1);
#endif
/* Step 2b: compute step length */
l = 0;
/* Compute t1: partial step length (maximum step in dual space without violating dual feasibility */
t1 = inf; /* +inf */
/* find the index l s.t. it reaches the minimum of u+(x) / r */
for (k = me; k < iq; k++)
{
double tmp;
if (r(k) > 0.0 && ((tmp = u(k) / r(k)) < t1) )
{
t1 = tmp;
l = A(k);
}
}
/* Compute t2: full step length (minimum step in primal space such that the constraint ip becomes feasible */
if (std::abs(z.dot(z)) > std::numeric_limits<double>::epsilon()) // i.e. z != 0
t2 = -s(ip) / z.dot(np);
else
t2 = inf; /* +inf */
/* the step is chosen as the minimum of t1 and t2 */
t = std::min(t1, t2);
#ifdef TRACE_SOLVER
std::cerr << "Step sizes: " << t << " (t1 = " << t1 << ", t2 = " << t2 << ") ";
#endif
/* Step 2c: determine new S-pair and take step: */
/* case (i): no step in primal or dual space */
if (t >= inf)
{
/* QPP is infeasible */
// FIXME: unbounded to raise
q = iq;
return inf;
}
/* case (ii): step in dual space */
if (t2 >= inf)
{
/* set u = u + t * [-r 1) and drop constraint l from the active set A */
u.head(iq) -= t * r.head(iq);
u(iq) += t;
iai(l) = l;
delete_constraint(R, J, A, u, p, iq, l);
#ifdef TRACE_SOLVER
std::cerr << " in dual space: "
<< f_value << std::endl;
print_vector("x", x, n);
print_vector("z", z, n);
print_ivector("A", A, iq + 1);
#endif
goto l2a;
}
/* case (iii): step in primal and dual space */
x += t * z;
/* update the solution value */
f_value += t * z.dot(np) * (0.5 * t + u(iq));
u.head(iq) -= t * r.head(iq);
u(iq) += t;
#ifdef TRACE_SOLVER
std::cerr << " in both spaces: "
<< f_value << std::endl;
print_vector("x", x, n);
print_vector("u", u, iq + 1);
print_vector("r", r, iq + 1);
print_ivector("A", A, iq + 1);
#endif
if (t == t2)
{
#ifdef TRACE_SOLVER
std::cerr << "Full step has taken " << t << std::endl;
print_vector("x", x, n);
#endif
/* full step has taken */
/* add constraint ip to the active set*/
if (!add_constraint(R, J, d, iq, R_norm))
{
iaexcl(ip) = 0;
delete_constraint(R, J, A, u, p, iq, ip);
#ifdef TRACE_SOLVER
print_matrix("R", R, n);
print_ivector("A", A, iq);
#endif
for (i = 0; i < m; i++)
iai(i) = i;
for (i = 0; i < iq; i++)
{
A(i) = A_old(i);
iai(A(i)) = -1;
u(i) = u_old(i);
}
x = x_old;
goto l2; /* go to step 2 */
}
else
iai(ip) = -1;
#ifdef TRACE_SOLVER
print_matrix("R", R, n);
print_ivector("A", A, iq);
#endif
goto l1;
}
/* a patial step has taken */
#ifdef TRACE_SOLVER
std::cerr << "Partial step has taken " << t << std::endl;
print_vector("x", x, n);
#endif
/* drop constraint l */
iai(l) = l;
delete_constraint(R, J, A, u, p, iq, l);
#ifdef TRACE_SOLVER
print_matrix("R", R, n);
print_ivector("A", A, iq);
#endif
s(ip) = CI.col(ip).dot(x) + ci0(ip);
#ifdef TRACE_SOLVER
print_vector("s", s, mi);
#endif
goto l2a;
}
inline bool add_constraint(MatrixXd& R, MatrixXd& J, VectorXd& d, int& iq, double& R_norm)
{
int n=J.rows();
#ifdef TRACE_SOLVER
std::cerr << "Add constraint " << iq << '/';
#endif
int i, j, k;
double cc, ss, h, t1, t2, xny;
/* we have to find the Givens rotation which will reduce the element
d(j) to zero.
if it is already zero we don't have to do anything, except of
decreasing j */
for (j = n - 1; j >= iq + 1; j--)
{
/* The Givens rotation is done with the matrix (cc cs, cs -cc).
If cc is one, then element (j) of d is zero compared with element
(j - 1). Hence we don't have to do anything.
If cc is zero, then we just have to switch column (j) and column (j - 1)
of J. Since we only switch columns in J, we have to be careful how we
update d depending on the sign of gs.
Otherwise we have to apply the Givens rotation to these columns.
The i - 1 element of d has to be updated to h. */
cc = d(j - 1);
ss = d(j);
h = distance(cc, ss);
if (h == 0.0)
continue;
d(j) = 0.0;
ss = ss / h;
cc = cc / h;
if (cc < 0.0)
{
cc = -cc;
ss = -ss;
d(j - 1) = -h;
}
else
d(j - 1) = h;
xny = ss / (1.0 + cc);
for (k = 0; k < n; k++)
{
t1 = J(k,j - 1);
t2 = J(k,j);
J(k,j - 1) = t1 * cc + t2 * ss;
J(k,j) = xny * (t1 + J(k,j - 1)) - t2;
}
}
/* update the number of constraints added*/
iq++;
/* To update R we have to put the iq components of the d vector
into column iq - 1 of R
*/
R.col(iq-1).head(iq) = d.head(iq);
#ifdef TRACE_SOLVER
std::cerr << iq << std::endl;
#endif
if (std::abs(d(iq - 1)) <= std::numeric_limits<double>::epsilon() * R_norm)
// problem degenerate
return false;
R_norm = std::max<double>(R_norm, std::abs(d(iq - 1)));
return true;
}
inline void delete_constraint(MatrixXd& R, MatrixXd& J, VectorXi& A, VectorXd& u, int p, int& iq, int l)
{
int n = R.rows();
#ifdef TRACE_SOLVER
std::cerr << "Delete constraint " << l << ' ' << iq;
#endif
int i, j, k, qq;
double cc, ss, h, xny, t1, t2;
/* Find the index qq for active constraint l to be removed */
for (i = p; i < iq; i++)
if (A(i) == l)
{
qq = i;
break;
}
/* remove the constraint from the active set and the duals */
for (i = qq; i < iq - 1; i++)
{
A(i) = A(i + 1);
u(i) = u(i + 1);
R.col(i) = R.col(i+1);
}
A(iq - 1) = A(iq);
u(iq - 1) = u(iq);
A(iq) = 0;
u(iq) = 0.0;
for (j = 0; j < iq; j++)
R(j,iq - 1) = 0.0;
/* constraint has been fully removed */
iq--;
#ifdef TRACE_SOLVER
std::cerr << '/' << iq << std::endl;
#endif
if (iq == 0)
return;
for (j = qq; j < iq; j++)
{
cc = R(j,j);
ss = R(j + 1,j);
h = distance(cc, ss);
if (h == 0.0)
continue;
cc = cc / h;
ss = ss / h;
R(j + 1,j) = 0.0;
if (cc < 0.0)
{
R(j,j) = -h;
cc = -cc;
ss = -ss;
}
else
R(j,j) = h;
xny = ss / (1.0 + cc);
for (k = j + 1; k < iq; k++)
{
t1 = R(j,k);
t2 = R(j + 1,k);
R(j,k) = t1 * cc + t2 * ss;
R(j + 1,k) = xny * (t1 + R(j,k)) - t2;
}
for (k = 0; k < n; k++)
{
t1 = J(k,j);
t2 = J(k,j + 1);
J(k,j) = t1 * cc + t2 * ss;
J(k,j + 1) = xny * (J(k,j) + t1) - t2;
}
}
}
}
#endif