-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathloss_functions.py
130 lines (98 loc) · 4.81 KB
/
loss_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
from torch.nn import functional as F
def get_huber_loss(agent, states, actions, rewards, n_next_states, dones):
batch_indices = torch.arange(agent.batch_size, device=agent.device).long()
with torch.no_grad():
# compute next Q-value using target_network
q_next = agent.model(n_next_states)
# take action with highest q_value, _ gets the indices of the max value
a_star = torch.argmax(q_next, dim=-1)
if agent.use_double:
q_target_next = agent.target_model(n_next_states)
q_a_star = q_target_next[batch_indices, a_star]
else:
q_a_star = q_next[batch_indices, a_star]
target_q_values = rewards + (1 - dones) * agent.discount_factor * q_a_star
q = agent.model(states)
current_q_values = q[batch_indices, actions]
# use Huberloss for error clipping, prevents exploding gradients
loss = F.huber_loss(current_q_values, target_q_values, reduction="none")
td_errors = target_q_values - current_q_values
priorities = abs(td_errors).clamp(min=agent.replay_buffer_prio_offset)
return loss, priorities
def get_distributional_loss(agent, states, actions, rewards, n_next_states, dones):
# initialize target distribution matrix
m = torch.zeros((agent.batch_size, agent.num_atoms), device=agent.device)
batch_indices = torch.arange(agent.batch_size, device=agent.device).long()
with torch.no_grad():
# output of online model for n next states
q_next_dist = agent.model(n_next_states)
q_next = (q_next_dist * agent.z_support).sum(-1)
# get best actions for next states according to online model
# a* = argmax_a(sum_i(z_i *p_i(x_{t+1},a)))
a_star = torch.argmax(q_next, dim=-1)
if agent.use_double:
# output of target model for n next states
q_target_next_dist = agent.target_model(n_next_states)
# get distributions for action a* selected by online model
next_dist = q_target_next_dist[batch_indices, a_star]
else:
next_dist = q_next_dist[batch_indices, a_star]
# Tz = r + gamma*(1-done)*z
T_z = rewards.unsqueeze(-1) + (1 - dones).unsqueeze(-1) * (
agent.discount_factor ** agent.n_step_returns) * agent.z_support
# eingrenzen der Werte
T_z = T_z.clamp(min=agent.v_min, max=agent.v_max)
# bj ist hier der index der atome auf denen die Distribution liegt
bj = (T_z - agent.v_min) / agent.z_delta
# l und u sind die ganzzahligen indizes auf die bj projeziert werden soll
l = bj.floor().long()
u = bj.ceil().long()
# values to be added at the l and u indices
l_add = (u - bj) * next_dist
u_add = (bj - l) * next_dist
# values to be added at the indices where l == u == bj
# todo: is this needed? It does not seem to be a part of the algorithm in the dist paper
same_add = (u == l) * next_dist
# add values to m at the given indices
m.view(-1).index_add_(0, u.view(-1) + agent.index_offset, u_add.view(-1))
m.view(-1).index_add_(0, l.view(-1) + agent.index_offset, l_add.view(-1))
m.view(-1).index_add_(0, l.view(-1) + agent.index_offset, same_add.view(-1))
# output of online model for states
# shape (batch_size, action_space, num_atoms)
q_dist_log = agent.model(states, log=True)
q_dist_log_a = q_dist_log[batch_indices, actions]
if agent.use_kl_loss:
# get Kullbeck-Leibler divergence of target and approximating distribution
# the KL divergence calculation has some issues as parts of m can be 0.
# this makes the log(m) = -inf and loss = nan
# KL divergence does not work when values of the distribution are 0
m = m.clamp(min=1e-5)
m /= m.sum(dim=-1, keepdim=True)
loss = (m * m.log() - m * q_dist_log_a).sum(dim=-1) # KL divergence
else:
loss = -torch.sum(m * q_dist_log_a, dim=-1) # cross entropy
# todo: remove
if torch.isnan(loss).any() or (loss < 0).any():
torch.set_printoptions(profile="full")
print("loss:", loss)
print("m:", m)
print("q_next_dist:", q_next_dist)
print("q_next:", q_next)
print("z_support:", agent.z_support)
print("a_star:", a_star)
print("next_dist:", next_dist)
print("T_z:", T_z)
print("bj:", bj)
print("l:", l)
print("u:", u)
print("l_add:", l_add)
print("u_add:", u_add)
print("same_add:", same_add)
print("q_dist_log:", q_dist_log)
print("q_dist_log_a:", q_dist_log_a)
torch.set_printoptions(profile="default")
if torch.isnan(loss).any():
assert False, "here you go ..."
priorities = loss.clamp(min=agent.replay_buffer_prio_offset)
return loss, priorities