-
Notifications
You must be signed in to change notification settings - Fork 66
/
Copy pathjoint.py
234 lines (199 loc) · 9.1 KB
/
joint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
"""Example running MemN2N on a single bAbI task.
Download tasks from facebook.ai/babi """
from __future__ import absolute_import
from __future__ import print_function
from data_utils import load_task, vectorize_data
from sklearn import metrics
from sklearn.model_selection import train_test_split
from memn2n_kv import MemN2N_KV
from itertools import chain
from six.moves import range, reduce
from memn2n_kv import zero_nil_slot, add_gradient_noise
import time
import tensorflow as tf
import numpy as np
import pandas as pd
timestamp = str(int(time.time()))
tf.flags.DEFINE_float("learning_rate", 0.001, "Learning rate for Adam Optimizer.")
tf.flags.DEFINE_float("epsilon", 0.1, "Epsilon value for Adam Optimizer.")
tf.flags.DEFINE_float("l2_lambda", 0.1, "Lambda for l2 loss.")
tf.flags.DEFINE_float("keep_prob", 1.0, "Keep probability for dropout")
tf.flags.DEFINE_float("max_grad_norm", 20.0, "Clip gradients to this norm.")
tf.flags.DEFINE_integer("evaluation_interval", 20, "Evaluate and print results every x epochs")
tf.flags.DEFINE_integer("batch_size", 50, "Batch size for training.")
tf.flags.DEFINE_integer("hops", 3, "Number of hops in the Memory Network.")
tf.flags.DEFINE_integer("epochs", 200, "Number of epochs to train for.")
tf.flags.DEFINE_integer("embedding_size", 40, "Embedding size for embedding matrices.")
tf.flags.DEFINE_integer("memory_size", 50, "Maximum size of memory.")
tf.flags.DEFINE_integer("random_state", None, "Random state.")
tf.flags.DEFINE_string("data_dir", "data/tasks_1-20_v1-2/en/", "Directory containing bAbI tasks")
tf.flags.DEFINE_string("param_output_file", "logs/params_{}.csv".format(timestamp), "Name of output file for model hyperparameters")
tf.flags.DEFINE_string("output_file", "logs/scores_{}.csv".format(timestamp), "Name of output file for final bAbI accuracy scores.")
tf.flags.DEFINE_integer("feature_size", 50, "Feature size")
tf.flags.DEFINE_string("reader", "bow", "Reader for the model")
FLAGS = tf.flags.FLAGS
print("\nParameters:")
with open(FLAGS.param_output_file, 'w') as f:
for attr, value in sorted(FLAGS.__flags.items()):
line = "{}={}".format(attr.upper(), value)
f.write(line + '\n')
print(line)
print("")
print("Started Joint Model")
# load all train/test data
ids = range(1, 21)
train, test = [], []
for i in ids:
tr, te = load_task(FLAGS.data_dir, i)
train.append(tr)
test.append(te)
data = list(chain.from_iterable(train + test))
vocab = sorted(reduce(lambda x, y: x | y, (set(list(chain.from_iterable(s)) + q + a) for s, q, a in data)))
word_idx = dict((c, i + 1) for i, c in enumerate(vocab))
max_story_size = max(map(len, (s for s, _, _ in data)))
mean_story_size = int(np.mean([len(s) for s, _, _ in data]))
sentence_size = max(map(len, chain.from_iterable(s for s, _, _ in data)))
query_size = max(map(len, (q for _, q, _ in data)))
memory_size = min(FLAGS.memory_size, max_story_size)
vocab_size = len(word_idx) + 1 # +1 for nil word
sentence_size = max(query_size, sentence_size) # for the position
print("Longest sentence length", sentence_size)
print("Longest story length", max_story_size)
print("Average story length", mean_story_size)
# train/validation/test sets
trainS = []
valS = []
trainQ = []
valQ = []
trainA = []
valA = []
for task in train:
S, Q, A = vectorize_data(task, word_idx, sentence_size, memory_size)
ts, vs, tq, vq, ta, va = train_test_split(S, Q, A, test_size=0.1, random_state=FLAGS.random_state)
trainS.append(ts)
trainQ.append(tq)
trainA.append(ta)
valS.append(vs)
valQ.append(vq)
valA.append(va)
trainS = reduce(lambda a,b : np.vstack((a,b)), (x for x in trainS))
trainQ = reduce(lambda a,b : np.vstack((a,b)), (x for x in trainQ))
trainA = reduce(lambda a,b : np.vstack((a,b)), (x for x in trainA))
valS = reduce(lambda a,b : np.vstack((a,b)), (x for x in valS))
valQ = reduce(lambda a,b : np.vstack((a,b)), (x for x in valQ))
valA = reduce(lambda a,b : np.vstack((a,b)), (x for x in valA))
testS, testQ, testA = vectorize_data(list(chain.from_iterable(test)), word_idx, sentence_size, memory_size)
n_train = trainS.shape[0]
n_val = valS.shape[0]
n_test = testS.shape[0]
print("Training Size", n_train)
print("Validation Size", n_val)
print("Testing Size", n_test)
print(trainS.shape, valS.shape, testS.shape)
print(trainQ.shape, valQ.shape, testQ.shape)
print(trainA.shape, valA.shape, testA.shape)
train_labels = np.argmax(trainA, axis=1)
test_labels = np.argmax(testA, axis=1)
val_labels = np.argmax(valA, axis=1)
tf.set_random_seed(FLAGS.random_state)
batch_size = FLAGS.batch_size
# This avoids feeding 1 task after another, instead each batch has a random sampling of tasks
batches = zip(range(0, n_train-batch_size, batch_size), range(batch_size, n_train, batch_size))
batches = [(start, end) for start, end in batches]
with tf.Session() as sess:
global_step = tf.Variable(0, name="global_step", trainable=False)
# decay learning rate
starter_learning_rate = FLAGS.learning_rate
learning_rate = tf.train.exponential_decay(starter_learning_rate, global_step, 90000, 0.96, staircase=True)
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, epsilon=FLAGS.epsilon)
model = MemN2N_KV(batch_size=batch_size, vocab_size=vocab_size,
query_size=sentence_size, story_size=sentence_size, memory_key_size=memory_size,
feature_size=FLAGS.feature_size, memory_value_size=memory_size,
embedding_size=FLAGS.embedding_size, hops=FLAGS.hops, reader=FLAGS.reader,
l2_lambda=FLAGS.l2_lambda)
grads_and_vars = optimizer.compute_gradients(model.loss_op)
grads_and_vars = [(tf.clip_by_norm(g, FLAGS.max_grad_norm), v)
for g, v in grads_and_vars if g is not None]
grads_and_vars = [(add_gradient_noise(g), v) for g, v in grads_and_vars]
nil_grads_and_vars = []
for g, v in grads_and_vars:
if v.name in model._nil_vars:
nil_grads_and_vars.append((zero_nil_slot(g), v))
else:
nil_grads_and_vars.append((g, v))
train_op = optimizer.apply_gradients(nil_grads_and_vars, name="train_op", global_step=global_step)
sess.run(tf.global_variables_initializer())
def train_step(s, q, a):
feed_dict = {
model._memory_value: s,
model._query: q,
model._memory_key: s,
model._labels: a,
model.keep_prob: FLAGS.keep_prob
}
_, step, predict_op = sess.run([train_op, global_step, model.predict_op], feed_dict)
return predict_op
def test_step(s, q):
feed_dict = {
model._query: q,
model._memory_key: s,
model._memory_value: s,
model.keep_prob: 1
}
preds = sess.run(model.predict_op, feed_dict)
return preds
for i in range(1, FLAGS.epochs+1):
np.random.shuffle(batches)
total_cost = 0.0
for start, end in batches:
s = trainS[start:end]
q = trainQ[start:end]
a = trainA[start:end]
train_step(s, q, a)
if i % FLAGS.evaluation_interval == 0 or i == FLAGS.epochs:
train_accs = []
for start in range(0, n_train, n_train/20):
end = start + n_train/20
s = trainS[start:end]
q = trainQ[start:end]
predict_op = test_step(s, q)
acc = metrics.accuracy_score(predict_op, train_labels[start:end])
train_accs.append('{0:.2f}'.format(acc))
val_accs = []
for start in range(0, n_val, n_val/20):
end = start + n_val/20
s = valS[start:end]
q = valQ[start:end]
val_preds = test_step(s, q)
acc = metrics.accuracy_score(np.array(val_preds), val_labels[start:end])
val_accs.append('{0:.2f}'.format(acc))
test_accs = []
for start in range(0, n_test, n_test/20):
end = start + n_test/20
s = testS[start:end]
q = testQ[start:end]
val_preds = test_step(s, q)
acc = metrics.accuracy_score(np.array(val_preds), test_labels[start:end])
test_accs.append('{0:.2f}'.format(acc))
print('-----------------------')
print('Epoch', i)
print()
t = 1
for t1, t2, t3 in zip(train_accs, val_accs, test_accs):
print("Task {}".format(t))
print("Training Accuracy = {}".format(t1))
print("Validation Accuracy = {}".format(t2))
print("Testing Accuracy = {}".format(t3))
print()
t += 1
print('-----------------------')
# Write final results to csv file
if i == FLAGS.epochs:
print('Writing final results to {}'.format(FLAGS.output_file))
df = pd.DataFrame({
'Training Accuracy': train_accs,
'Validation Accuracy': val_accs,
'Testing Accuracy': test_accs
}, index=range(1, 21))
df.index.name = 'Task'
df.to_csv(FLAGS.output_file)