-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNumberTheory.cpp
131 lines (111 loc) · 3.27 KB
/
NumberTheory.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
// This is a collection of useful code for solving problems that
// involve modular linear equations. Note that all of the
// algorithms described here work on nonnegative integers.
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
typedef vector<int> VI;
typedef pair<int,int> PII;
// return a % b (positive value)
int mod(int a, int b) {
return ((a%b)+b)%b;
}
// computes gcd(a,b)
int gcd(int a, int b) {
int tmp;
while(b){a%=b; tmp=a; a=b; b=tmp;}
return a;
}
// computes lcm(a,b)
int lcm(int a, int b) {
return a/gcd(a,b)*b;
}
// returns d = gcd(a,b); finds x,y such that d = ax + by
int extended_euclid(int a, int b, int &x, int &y) {
int xx = y = 0;
int yy = x = 1;
while (b) {
int q = a/b;
int t = b; b = a%b; a = t;
t = xx; xx = x-q*xx; x = t;
t = yy; yy = y-q*yy; y = t;
}
return a;
}
// finds all solutions to ax = b (mod n)
VI modular_linear_equation_solver(int a, int b, int n) {
int x, y;
VI solutions;
int d = extended_euclid(a, n, x, y);
if (!(b%d)) {
x = mod (x*(b/d), n);
for (int i = 0; i < d; i++)
solutions.push_back(mod(x + i*(n/d), n));
}
return solutions;
}
// computes b such that ab = 1 (mod n), returns -1 on failure
int mod_inverse(int a, int n) {
int x, y;
int d = extended_euclid(a, n, x, y);
if (d > 1) return -1;
return mod(x,n);
}
// Chinese remainder theorem (special case): find z such that
// z % x = a, z % y = b. Here, z is unique modulo M = lcm(x,y).
// Return (z,M). On failure, M = -1.
PII chinese_remainder_theorem(int x, int a, int y, int b) {
int s, t;
int d = extended_euclid(x, y, s, t);
if (a%d != b%d) return make_pair(0, -1);
return make_pair(mod(s*b*x+t*a*y,x*y)/d, x*y/d);
}
// Chinese remainder theorem: find z such that
// z % x[i] = a[i] for all i. Note that the solution is
// unique modulo M = lcm_i (x[i]). Return (z,M). On
// failure, M = -1. Note that we do not require the a[i]'s
// to be relatively prime.
PII chinese_remainder_theorem(const VI &x, const VI &a) {
PII ret = make_pair(a[0], x[0]);
for (int i = 1; i < x.size(); i++) {
ret = chinese_remainder_theorem(ret.second, ret.first, x[i], a[i]);
if (ret.second == -1) break;
}
return ret;
}
// computes x and y such that ax + by = c; on failure, x = y =-1
void linear_diophantine(int a, int b, int c, int &x, int &y) {
int d = gcd(a,b);
if (c%d) {
x = y = -1;
} else {
x = c/d * mod_inverse(a/d, b/d);
y = (c-a*x)/b;
}
}
int main() {
// expected: 2
cout << gcd(14, 30) << endl;
// expected: 2 -2 1
int x, y;
int d = extended_euclid(14, 30, x, y);
cout << d << " " << x << " " << y << endl;
// expected: 95 45
VI sols = modular_linear_equation_solver(14, 30, 100);
for (int i = 0; i < (int) sols.size(); i++) cout << sols[i] << " ";
cout << endl;
// expected: 8
cout << mod_inverse(8, 9) << endl;
// expected: 23 56
// 11 12
int xs[] = {3, 5, 7, 4, 6};
int as[] = {2, 3, 2, 3, 5};
PII ret = chinese_remainder_theorem(VI (xs, xs+3), VI(as, as+3));
cout << ret.first << " " << ret.second << endl;
ret = chinese_remainder_theorem (VI(xs+3, xs+5), VI(as+3, as+5));
cout << ret.first << " " << ret.second << endl;
// expected: 5 -15
linear_diophantine(7, 2, 5, x, y);
cout << x << " " << y << endl;
}