-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMinCostMatching.cpp
130 lines (110 loc) · 3.08 KB
/
MinCostMatching.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
///////////////////////////////////////////////////////////////////////////
// Min cost bipartite matching via shortest augmenting paths
//
// This is an O(n^3) implementation of a shortest augmenting path
// algorithm for finding min cost perfect matchings in dense
// graphs. In practice, it solves 1000x1000 problems in around 1
// second.
//
// cost[i][j] = cost for pairing left node i with right node j
// Lmate[i] = index of right node that left node i pairs with
// Rmate[j] = index of left node that right node j pairs with
//
// The values in cost[i][j] may be positive or negative. To perform
// maximization, simply negate the cost[][] matrix.
///////////////////////////////////////////////////////////////////////////
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <vector>
using namespace std;
typedef vector<double> VD;
typedef vector<VD> VVD;
typedef vector<int> VI;
double MinCostMatching(const VVD &cost, VI &Lmate, VI &Rmate) {
int n = int(cost.size());
// construct dual feasible solution
VD u(n);
VD v(n);
for (int i = 0; i < n; i++) {
u[i] = cost[i][0];
for (int j = 1; j < n; j++) u[i] = min(u[i], cost[i][j]);
}
for (int j = 0; j < n; j++) {
v[j] = cost[0][j] - u[0];
for (int i = 1; i < n; i++) v[j] = min(v[j], cost[i][j] - u[i]);
}
// construct primal solution satisfying complementary slackness
Lmate = VI(n, -1);
Rmate = VI(n, -1);
int mated = 0;
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if (Rmate[j] != -1) continue;
if (fabs(cost[i][j] - u[i] - v[j]) < 1e-10) {
Lmate[i] = j;
Rmate[j] = i;
mated++;
break;
}
}
}
VD dist(n);
VI dad(n);
VI seen(n);
// repeat until primal solution is feasible
while (mated < n) {
// find an unmatched left node
int s = 0;
while (Lmate[s] != -1) s++;
// initialize Dijkstra
fill(dad.begin(), dad.end(), -1);
fill(seen.begin(), seen.end(), 0);
for (int k = 0; k < n; k++)
dist[k] = cost[s][k] - u[s] - v[k];
int j = 0;
while (true) {
// find closest
j = -1;
for (int k = 0; k < n; k++) {
if (seen[k]) continue;
if (j == -1 || dist[k] < dist[j]) j = k;
}
seen[j] = 1;
// termination condition
if (Rmate[j] == -1) break;
// relax neighbors
const int i = Rmate[j];
for (int k = 0; k < n; k++) {
if (seen[k]) continue;
const double new_dist = dist[j] + cost[i][k] - u[i] - v[k];
if (dist[k] > new_dist) {
dist[k] = new_dist;
dad[k] = j;
}
}
}
// update dual variables
for (int k = 0; k < n; k++) {
if (k == j || !seen[k]) continue;
const int i = Rmate[k];
v[k] += dist[k] - dist[j];
u[i] -= dist[k] - dist[j];
}
u[s] += dist[j];
// augment along path
while (dad[j] >= 0) {
const int d = dad[j];
Rmate[j] = Rmate[d];
Lmate[Rmate[j]] = j;
j = d;
}
Rmate[j] = s;
Lmate[s] = j;
mated++;
}
double value = 0;
for (int i = 0; i < n; i++)
value += cost[i][Lmate[i]];
return value;
}