-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDelaunayTriangulation.cpp
64 lines (55 loc) · 1.59 KB
/
DelaunayTriangulation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
// Slow but simple Delaunay triangulation. Does not handle
// degenerate cases (from O'Rourke, Computational Geometry in C)
//
// Running time: O(n^4)
//
// INPUT: x[] = x-coordinates
// y[] = y-coordinates
//
// OUTPUT: triples = a vector containing m triples of indices
// corresponding to triangle vertices
#include<vector>
using namespace std;
typedef double T;
struct triple {
int i, j, k;
triple() {}
triple(int i, int j, int k) : i(i), j(j), k(k) {}
};
vector<triple> delaunayTriangulation(vector<T>& x, vector<T>& y) {
int n = x.size();
vector<T> z(n);
vector<triple> ret;
for (int i = 0; i < n; i++)
z[i] = x[i] * x[i] + y[i] * y[i];
for (int i = 0; i < n-2; i++) {
for (int j = i+1; j < n; j++) {
for (int k = i+1; k < n; k++) {
if (j == k) continue;
double xn = (y[j]-y[i])*(z[k]-z[i]) - (y[k]-y[i])*(z[j]-z[i]);
double yn = (x[k]-x[i])*(z[j]-z[i]) - (x[j]-x[i])*(z[k]-z[i]);
double zn = (x[j]-x[i])*(y[k]-y[i]) - (x[k]-x[i])*(y[j]-y[i]);
bool flag = zn < 0;
for (int m = 0; flag && m < n; m++)
flag = flag && ((x[m]-x[i])*xn +
(y[m]-y[i])*yn +
(z[m]-z[i])*zn <= 0);
if (flag) ret.push_back(triple(i, j, k));
}
}
}
return ret;
}
int main()
{
T xs[]={0, 0, 1, 0.9};
T ys[]={0, 1, 0, 0.9};
vector<T> x(&xs[0], &xs[4]), y(&ys[0], &ys[4]);
vector<triple> tri = delaunayTriangulation(x, y);
//expected: 0 1 3
// 0 3 2
int i;
for(i = 0; i < tri.size(); i++)
printf("%d %d %d\n", tri[i].i, tri[i].j, tri[i].k);
return 0;
}