-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCopulaFunctions_flexible.R
272 lines (217 loc) · 6.68 KB
/
CopulaFunctions_flexible.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#---------------------------------------------------------------------------
# Non-parametric stats to measure dependence for a bivariate copula
#---------------------------------------------------------------------------
#Calculates the mean squared distance between copula
#points between two bounds and the main diagonal of
#the unit square.
#
#Args
#vi, vj Coordinates of points from a copula
#lb, ub Lower and upper bounds between 0 and 1
#
#Output
#The mean squared distance.
#
#Examples
#The earlier function D2lD2u should give the combined
#results of D2bds(vi,vj,0,.5) and D2bds(vi,vj,0.5,1).
#
D2bds<-function(vi,vj,lb,ub)
{
inds<-which(vi+vj>2*lb & vi+vj<2*ub)
if(length(inds)!=0)
{
dsq<-0.5*(vi[inds]-vj[inds])^2
D2<-sum(dsq)/length(dsq)
}else
{
D2<-NA
}
return(D2)
}
#-------------------------------------------------------------------------------------------
#Calculates the portion of the Spearman correlation
#that is due to points in from a copula that are
#between two bounds.
#
#Args
#vi, vj Coordinates of points from a copula
#lb, ub Lower and upper bounds between 0 and 1
#
#Output
#The portion of the Spearman correlation.
#
#Examples
#The earlier function CorlCoru should give the combined
#results of Corbds(vi,vj,0,.5) and Corbds(vi,vj,0.5,1).
#
Corbds<-function(vi,vj,lb,ub)
{
#get mean and variance
vi_mean<-mean(vi)
vj_mean<-mean(vj)
var_vi<-var(vi)
var_vj<-var(vj)
#compute the indices of the points between the bounds
inds<-which(vi+vj>2*lb & vi+vj<2*ub)
if(length(inds)!=0){
#get the portion of the Spearman
res<-sum((vi[inds]-vi_mean)*(vj[inds]-vj_mean))/((length(vi)-1)*sqrt(var_vi*var_vj))
}else{
res<-NA
}
return(res)
}
#--------------------------------------------------------------------------------------------------
# Calculates the P statistics for bivariate copula
#Args
#vi, vj Coordinates of points from a copula
#lb, ub Lower and upper bounds between 0 and 1
#
#Outputs
# A list of 7 elements:
# [1] dist_S : a vector specifying the x coordinate values in step function drawing plot
# [2] S : a vector specifying the y coordinate values in step function drawing plot
# [3] dist_Si : a vector specifying the x coordinate values in continuous line plot : independence
# [4] Si : a vector specifying the y coordinate values in continuous line plot : independence
# [5] abs_res : a numeric value for P statistic
# [6] Au_S : area under the step function plot
# [7] Au_Si : area under the independence line
Pbds<-function(vi,vj,lb,ub){
if(lb>=ub){cat("error : lb is greater or equal to ub","\n")}
# when two boundary lines are on the right side of vi+vj=1 line
if((2*lb>=1) & (2*ub >=1)){
d_max<-abs((lb-1)*sqrt(2))
a<-abs(2*sqrt(2)*(ub-1))
b<-2*d_max
h<-abs(2*(ub-lb))/sqrt(2)
deno<-0.5*(a+b)*h
dist_Si1<-c()
Si1<-c()
for (di in seq(from=0, to=(0.5*a), by=(0.5*a)/1000)){
dist_Si1<-c(dist_Si1,di)
a1<-2*di*h
Si1<-c(Si1,a1)
}
dist_Si2<-c()
Si2<-c()
ditemp<-d_max-(a/2)
for(di in seq(from=0, to=ditemp, by=ditemp/1000)){
dist_Si2<-c(dist_Si2,(tail(dist_Si1,1)+di))
a2<-2*(0.5*di*(h+(h-di)))
a2<-tail(Si1,1)+a2
Si2<-c(Si2,a2)
}
dist_Si<-c(dist_Si1,dist_Si2[-1])
Si<-c(Si1,Si2[-1])/deno
Au_Si<-(h*(d_max^2))+((a^3)/24)-((d_max^3)/3)
Au_Si<-Au_Si/deno
# when two boundary lines are on the left side of vi+vj=1 line
}else if((2*lb<=1) & (2*ub <=1)){
d_max<-ub*sqrt(2)
a<-2*sqrt(2)*lb
b<-2*d_max
h<-abs(2*(ub-lb))/sqrt(2)
deno<-0.5*(a+b)*h
dist_Si1<-c()
Si1<-c()
for (di in seq(from=0, to=(0.5*a), by=(0.5*a)/1000)){
dist_Si1<-c(dist_Si1,di)
a1<-2*di*h
Si1<-c(Si1,a1)
}
dist_Si2<-c()
Si2<-c()
ditemp<-d_max-(a/2)
for(di in seq(from=0, to=ditemp, by=ditemp/1000)){
dist_Si2<-c(dist_Si2,(tail(dist_Si1,1)+di))
a2<-2*(0.5*di*(h+(h-di)))
a2<-tail(Si1,1)+a2
Si2<-c(Si2,a2)
}
dist_Si<-c(dist_Si1,dist_Si2[-1])
Si<-c(Si1,Si2[-1])/deno
Au_Si<-(h*(d_max^2))+((a^3)/24)-((d_max^3)/3)
Au_Si<-Au_Si/deno
# when lower boundary lines are on the left side of vi+vj=1 line and upper on the other side
}else{
d_max<-1/sqrt(2)
lblen<-sqrt(2)*lb
ublen<-abs(sqrt(2)*(ub-1))
di1<-min(lblen,ublen)
di2<-max(lblen,ublen)
h<-abs(2*(ub-lb))/sqrt(2)
deno<-(0.5-(2*(lb^2)))+(0.5-(2*((ub-1)^2)))
dist_Si1<-c()
Si1<-c()
for (di in seq(from=0, to=di1, by=di1/1000)){
dist_Si1<-c(dist_Si1,di)
a1<-2*di*h
Si1<-c(Si1,a1)
}
dist_Si2<-c()
Si2<-c()
ditemp1<-di2-di1
for(di in seq(from=0, to=ditemp1, by=ditemp1/1000)){
dist_Si2<-c(dist_Si2,(tail(dist_Si1,1)+di))
a2<-2*(0.5*di*(h+(h-di)))
a2<-tail(Si1,1)+a2
Si2<-c(Si2,a2)
}
base<-(h-ditemp1)
dist_Si3<-c()
Si3<-c()
ditemp2<-d_max-di2
for(di in seq(from=0, to=ditemp2, by=ditemp2/1000)){
dist_Si3<-c(dist_Si3,(tail(dist_Si2,1)+di))
a3<-2*(0.5*di*(base+(base-(2*di))))
a3<-tail(Si2,1)+a3
Si3<-c(Si3,a3)
}
dist_Si<-c(dist_Si1,dist_Si2[-1],dist_Si3[-1])
Si<-c(Si1,Si2[-1],Si3[-1])/deno
Au_Si<-(ditemp1^2)*(h-base)
Au_Si<-Au_Si+((di1^3)/3)
Au_Si<-Au_Si+(base*(ditemp2^2))
Au_Si<-Au_Si-((ditemp2^3)/3)
Au_Si<-Au_Si/deno
}
#---------------------------------------------------------
inds<-which(vi+vj>2*lb & vi+vj<2*ub)
if(length(inds)!=0){
dist_sort<-sort(abs(vi[inds]-vj[inds])/sqrt(2))
dpt_c<-0
dpt_uniq<-c(0)
dist_sort_df<-as.data.frame(table(dist_sort))
for (i in 1:length(dist_sort_df$Freq)){
dpt_c<-dpt_c+(dist_sort_df$Freq[i]/length(dist_sort))
dpt_uniq<-c(dpt_uniq,dpt_c)
}
dpt_uniq<-c(dpt_uniq,1)
dist_dpt_uniq<-c(0,as.numeric(as.character(dist_sort_df$dist_sort)),d_max)
nrep<-2
S<-rep(dpt_uniq,each=nrep)
dist_S<-rep(dist_dpt_uniq[2:length(dist_dpt_uniq)],each=nrep)
dist_S<-c(0,dist_S,d_max)
#plot(dist_S,S,type="l",col="red")
#integrals under the functions S
Au_S<-0
for(i in 1:(length(dpt_uniq)-1)){
Au_S<-Au_S+(dpt_uniq[i]*(dist_dpt_uniq[i+1]-dist_dpt_uniq[i]))
}
res<-Au_S-Au_Si
}else{
dist_S<-NA
S<-NA
Au_S<-NA
res<-NA
}
#-----------------------------------------------------------------------
return(list(dist_S=dist_S,
S=S,
dist_Si=dist_Si,
Si=Si,
abs_res=abs(res),
Au_S=Au_S,
Au_Si=Au_Si))
}