-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathCVProcessModel.hpp
executable file
·100 lines (84 loc) · 3.2 KB
/
CVProcessModel.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
/**
* Copyright (C) 2018-2019 Sergey Morozov <[email protected]>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef SENSOR_FUSION_CONSTANTVELOCITY_HPP
#define SENSOR_FUSION_CONSTANTVELOCITY_HPP
#include "definitions.hpp"
#include "../state_vector_views/CVStateVectorView.hpp"
#include "ProcessModel.hpp"
#include <ctime>
namespace ser94mor
{
namespace sensor_fusion
{
namespace CV
{
/**
* A concrete process model class for CV process model. The State vector for process model consists of
* [ px, py, vx, vy ].
* The naming of matrices are taken from the
* "Thrun, S., Burgard, W. and Fox, D., 2005. Probabilistic robotics. MIT press."
*/
class ProcessModel
: public ser94mor::sensor_fusion::ProcessModel<StateVector, StateCovarianceMatrix, ControlVector,
ProcessNoiseCovarianceMatrix,
ROStateVectorView, RWStateVectorView,
ProcessModelKind::CV, kIsLinear>
{
public:
/**
* Constructor.
*/
ProcessModel();
/**
* @param dt a difference between the current measurement timestamp and the previous measurement timestamp
* @return a state transition matrix
*/
StateTransitionMatrix A(double_t dt) const;
/**
* @return a control transition matrix
*/
ControlTransitionMatrix B() const;
/**
* @param dt a difference between the current measurement timestamp and the previous measurement timestamp
* @return a process covariance matrix
*/
ProcessCovarianceMatrix R(double_t dt) const;
/**
* Subtract one state vector from another.
*
* @param state_vector_1 a state vector to subtract from
* @param state_vector_2 a state vector which to subtract
*
* @return a difference between two state vectors
*/
static StateVector Subtract(const StateVector& state_vector_1, const StateVector& state_vector_2);
/**
* Sums two vectors.
*
* @param state_vector_1 a first state vector
* @param state_vector_2 a second state vector
*
* @return a sum of two state vectors
*/
static StateVector Add(const StateVector_type& state_vector_1, const StateVector_type& state_vector_2);
private:
StateTransitionMatrix state_transition_matrix_prototype_;
};
}
}
}
#endif //SENSOR_FUSION_CONSTANTVELOCITY_HPP