-
Notifications
You must be signed in to change notification settings - Fork 644
/
visualization.py
356 lines (317 loc) · 12.6 KB
/
visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
from __future__ import print_function
from __future__ import division
import time
import numpy as np
from scipy.ndimage.filters import gaussian_filter1d
import config
import microphone
import dsp
import led
_time_prev = time.time() * 1000.0
"""The previous time that the frames_per_second() function was called"""
_fps = dsp.ExpFilter(val=config.FPS, alpha_decay=0.2, alpha_rise=0.2)
"""The low-pass filter used to estimate frames-per-second"""
def frames_per_second():
"""Return the estimated frames per second
Returns the current estimate for frames-per-second (FPS).
FPS is estimated by measured the amount of time that has elapsed since
this function was previously called. The FPS estimate is low-pass filtered
to reduce noise.
This function is intended to be called one time for every iteration of
the program's main loop.
Returns
-------
fps : float
Estimated frames-per-second. This value is low-pass filtered
to reduce noise.
"""
global _time_prev, _fps
time_now = time.time() * 1000.0
dt = time_now - _time_prev
_time_prev = time_now
if dt == 0.0:
return _fps.value
return _fps.update(1000.0 / dt)
def memoize(function):
"""Provides a decorator for memoizing functions"""
from functools import wraps
memo = {}
@wraps(function)
def wrapper(*args):
if args in memo:
return memo[args]
else:
rv = function(*args)
memo[args] = rv
return rv
return wrapper
@memoize
def _normalized_linspace(size):
return np.linspace(0, 1, size)
def interpolate(y, new_length):
"""Intelligently resizes the array by linearly interpolating the values
Parameters
----------
y : np.array
Array that should be resized
new_length : int
The length of the new interpolated array
Returns
-------
z : np.array
New array with length of new_length that contains the interpolated
values of y.
"""
if len(y) == new_length:
return y
x_old = _normalized_linspace(len(y))
x_new = _normalized_linspace(new_length)
z = np.interp(x_new, x_old, y)
return z
r_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
alpha_decay=0.2, alpha_rise=0.99)
g_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
alpha_decay=0.05, alpha_rise=0.3)
b_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
alpha_decay=0.1, alpha_rise=0.5)
common_mode = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
alpha_decay=0.99, alpha_rise=0.01)
p_filt = dsp.ExpFilter(np.tile(1, (3, config.N_PIXELS // 2)),
alpha_decay=0.1, alpha_rise=0.99)
p = np.tile(1.0, (3, config.N_PIXELS // 2))
gain = dsp.ExpFilter(np.tile(0.01, config.N_FFT_BINS),
alpha_decay=0.001, alpha_rise=0.99)
def visualize_scroll(y):
"""Effect that originates in the center and scrolls outwards"""
global p
y = y**2.0
gain.update(y)
y /= gain.value
y *= 255.0
r = int(np.max(y[:len(y) // 3]))
g = int(np.max(y[len(y) // 3: 2 * len(y) // 3]))
b = int(np.max(y[2 * len(y) // 3:]))
# Scrolling effect window
p[:, 1:] = p[:, :-1]
p *= 0.98
p = gaussian_filter1d(p, sigma=0.2)
# Create new color originating at the center
p[0, 0] = r
p[1, 0] = g
p[2, 0] = b
# Update the LED strip
return np.concatenate((p[:, ::-1], p), axis=1)
def visualize_energy(y):
"""Effect that expands from the center with increasing sound energy"""
global p
y = np.copy(y)
gain.update(y)
y /= gain.value
# Scale by the width of the LED strip
y *= float((config.N_PIXELS // 2) - 1)
# Map color channels according to energy in the different freq bands
scale = 0.9
r = int(np.mean(y[:len(y) // 3]**scale))
g = int(np.mean(y[len(y) // 3: 2 * len(y) // 3]**scale))
b = int(np.mean(y[2 * len(y) // 3:]**scale))
# Assign color to different frequency regions
p[0, :r] = 255.0
p[0, r:] = 0.0
p[1, :g] = 255.0
p[1, g:] = 0.0
p[2, :b] = 255.0
p[2, b:] = 0.0
p_filt.update(p)
p = np.round(p_filt.value)
# Apply substantial blur to smooth the edges
p[0, :] = gaussian_filter1d(p[0, :], sigma=4.0)
p[1, :] = gaussian_filter1d(p[1, :], sigma=4.0)
p[2, :] = gaussian_filter1d(p[2, :], sigma=4.0)
# Set the new pixel value
return np.concatenate((p[:, ::-1], p), axis=1)
_prev_spectrum = np.tile(0.01, config.N_PIXELS // 2)
def visualize_spectrum(y):
"""Effect that maps the Mel filterbank frequencies onto the LED strip"""
global _prev_spectrum
y = np.copy(interpolate(y, config.N_PIXELS // 2))
common_mode.update(y)
diff = y - _prev_spectrum
_prev_spectrum = np.copy(y)
# Color channel mappings
r = r_filt.update(y - common_mode.value)
g = np.abs(diff)
b = b_filt.update(np.copy(y))
# Mirror the color channels for symmetric output
r = np.concatenate((r[::-1], r))
g = np.concatenate((g[::-1], g))
b = np.concatenate((b[::-1], b))
output = np.array([r, g,b]) * 255
return output
fft_plot_filter = dsp.ExpFilter(np.tile(1e-1, config.N_FFT_BINS),
alpha_decay=0.5, alpha_rise=0.99)
mel_gain = dsp.ExpFilter(np.tile(1e-1, config.N_FFT_BINS),
alpha_decay=0.01, alpha_rise=0.99)
mel_smoothing = dsp.ExpFilter(np.tile(1e-1, config.N_FFT_BINS),
alpha_decay=0.5, alpha_rise=0.99)
volume = dsp.ExpFilter(config.MIN_VOLUME_THRESHOLD,
alpha_decay=0.02, alpha_rise=0.02)
fft_window = np.hamming(int(config.MIC_RATE / config.FPS) * config.N_ROLLING_HISTORY)
prev_fps_update = time.time()
def microphone_update(audio_samples):
global y_roll, prev_rms, prev_exp, prev_fps_update
# Normalize samples between 0 and 1
y = audio_samples / 2.0**15
# Construct a rolling window of audio samples
y_roll[:-1] = y_roll[1:]
y_roll[-1, :] = np.copy(y)
y_data = np.concatenate(y_roll, axis=0).astype(np.float32)
vol = np.max(np.abs(y_data))
if vol < config.MIN_VOLUME_THRESHOLD:
print('No audio input. Volume below threshold. Volume:', vol)
led.pixels = np.tile(0, (3, config.N_PIXELS))
led.update()
else:
# Transform audio input into the frequency domain
N = len(y_data)
N_zeros = 2**int(np.ceil(np.log2(N))) - N
# Pad with zeros until the next power of two
y_data *= fft_window
y_padded = np.pad(y_data, (0, N_zeros), mode='constant')
YS = np.abs(np.fft.rfft(y_padded)[:N // 2])
# Construct a Mel filterbank from the FFT data
mel = np.atleast_2d(YS).T * dsp.mel_y.T
# Scale data to values more suitable for visualization
# mel = np.sum(mel, axis=0)
mel = np.sum(mel, axis=0)
mel = mel**2.0
# Gain normalization
mel_gain.update(np.max(gaussian_filter1d(mel, sigma=1.0)))
mel /= mel_gain.value
mel = mel_smoothing.update(mel)
# Map filterbank output onto LED strip
output = visualization_effect(mel)
led.pixels = output
led.update()
if config.USE_GUI:
# Plot filterbank output
x = np.linspace(config.MIN_FREQUENCY, config.MAX_FREQUENCY, len(mel))
mel_curve.setData(x=x, y=fft_plot_filter.update(mel))
# Plot the color channels
r_curve.setData(y=led.pixels[0])
g_curve.setData(y=led.pixels[1])
b_curve.setData(y=led.pixels[2])
if config.USE_GUI:
app.processEvents()
if config.DISPLAY_FPS:
fps = frames_per_second()
if time.time() - 0.5 > prev_fps_update:
prev_fps_update = time.time()
print('FPS {:.0f} / {:.0f}'.format(fps, config.FPS))
# Number of audio samples to read every time frame
samples_per_frame = int(config.MIC_RATE / config.FPS)
# Array containing the rolling audio sample window
y_roll = np.random.rand(config.N_ROLLING_HISTORY, samples_per_frame) / 1e16
visualization_effect = visualize_spectrum
"""Visualization effect to display on the LED strip"""
if __name__ == '__main__':
if config.USE_GUI:
import pyqtgraph as pg
from pyqtgraph.Qt import QtGui, QtCore
# Create GUI window
app = QtGui.QApplication([])
view = pg.GraphicsView()
layout = pg.GraphicsLayout(border=(100,100,100))
view.setCentralItem(layout)
view.show()
view.setWindowTitle('Visualization')
view.resize(800,600)
# Mel filterbank plot
fft_plot = layout.addPlot(title='Filterbank Output', colspan=3)
fft_plot.setRange(yRange=[-0.1, 1.2])
fft_plot.disableAutoRange(axis=pg.ViewBox.YAxis)
x_data = np.array(range(1, config.N_FFT_BINS + 1))
mel_curve = pg.PlotCurveItem()
mel_curve.setData(x=x_data, y=x_data*0)
fft_plot.addItem(mel_curve)
# Visualization plot
layout.nextRow()
led_plot = layout.addPlot(title='Visualization Output', colspan=3)
led_plot.setRange(yRange=[-5, 260])
led_plot.disableAutoRange(axis=pg.ViewBox.YAxis)
# Pen for each of the color channel curves
r_pen = pg.mkPen((255, 30, 30, 200), width=4)
g_pen = pg.mkPen((30, 255, 30, 200), width=4)
b_pen = pg.mkPen((30, 30, 255, 200), width=4)
# Color channel curves
r_curve = pg.PlotCurveItem(pen=r_pen)
g_curve = pg.PlotCurveItem(pen=g_pen)
b_curve = pg.PlotCurveItem(pen=b_pen)
# Define x data
x_data = np.array(range(1, config.N_PIXELS + 1))
r_curve.setData(x=x_data, y=x_data*0)
g_curve.setData(x=x_data, y=x_data*0)
b_curve.setData(x=x_data, y=x_data*0)
# Add curves to plot
led_plot.addItem(r_curve)
led_plot.addItem(g_curve)
led_plot.addItem(b_curve)
# Frequency range label
freq_label = pg.LabelItem('')
# Frequency slider
def freq_slider_change(tick):
minf = freq_slider.tickValue(0)**2.0 * (config.MIC_RATE / 2.0)
maxf = freq_slider.tickValue(1)**2.0 * (config.MIC_RATE / 2.0)
t = 'Frequency range: {:.0f} - {:.0f} Hz'.format(minf, maxf)
freq_label.setText(t)
config.MIN_FREQUENCY = minf
config.MAX_FREQUENCY = maxf
dsp.create_mel_bank()
freq_slider = pg.TickSliderItem(orientation='bottom', allowAdd=False)
freq_slider.tickMoveFinished = freq_slider_change
freq_slider.addTick((config.MIN_FREQUENCY / (config.MIC_RATE / 2.0))**0.5)
freq_slider.addTick((config.MAX_FREQUENCY / (config.MIC_RATE / 2.0))**0.5)
freq_label.setText('Frequency range: {} - {} Hz'.format(
config.MIN_FREQUENCY,
config.MAX_FREQUENCY))
# Effect selection
active_color = '#16dbeb'
inactive_color = '#FFFFFF'
def energy_click(x):
global visualization_effect
visualization_effect = visualize_energy
energy_label.setText('Energy', color=active_color)
scroll_label.setText('Scroll', color=inactive_color)
spectrum_label.setText('Spectrum', color=inactive_color)
def scroll_click(x):
global visualization_effect
visualization_effect = visualize_scroll
energy_label.setText('Energy', color=inactive_color)
scroll_label.setText('Scroll', color=active_color)
spectrum_label.setText('Spectrum', color=inactive_color)
def spectrum_click(x):
global visualization_effect
visualization_effect = visualize_spectrum
energy_label.setText('Energy', color=inactive_color)
scroll_label.setText('Scroll', color=inactive_color)
spectrum_label.setText('Spectrum', color=active_color)
# Create effect "buttons" (labels with click event)
energy_label = pg.LabelItem('Energy')
scroll_label = pg.LabelItem('Scroll')
spectrum_label = pg.LabelItem('Spectrum')
energy_label.mousePressEvent = energy_click
scroll_label.mousePressEvent = scroll_click
spectrum_label.mousePressEvent = spectrum_click
energy_click(0)
# Layout
layout.nextRow()
layout.addItem(freq_label, colspan=3)
layout.nextRow()
layout.addItem(freq_slider, colspan=3)
layout.nextRow()
layout.addItem(energy_label)
layout.addItem(scroll_label)
layout.addItem(spectrum_label)
# Initialize LEDs
led.update()
# Start listening to live audio stream
microphone.start_stream(microphone_update)