-
Notifications
You must be signed in to change notification settings - Fork 540
/
Copy pathdataset_handler.py
118 lines (98 loc) · 2.86 KB
/
dataset_handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# Dataset handler for binary classification tasks (MR, CR, SUBJ, MQPA)
import numpy as np
from numpy.random import RandomState
import os.path
def load_data(encoder, name, loc='./data/', seed=1234):
"""
Load one of MR, CR, SUBJ or MPQA
"""
z = {}
if name == 'MR':
pos, neg = load_rt(loc=loc)
elif name == 'SUBJ':
pos, neg = load_subj(loc=loc)
elif name == 'CR':
pos, neg = load_cr(loc=loc)
elif name == 'MPQA':
pos, neg = load_mpqa(loc=loc)
labels = compute_labels(pos, neg)
text, labels = shuffle_data(pos+neg, labels, seed=seed)
z['text'] = text
z['labels'] = labels
print 'Computing skip-thought vectors...'
features = encoder.encode(text, verbose=False)
return z, features
def load_rt(loc='./data/'):
"""
Load the MR dataset
"""
pos, neg = [], []
with open(os.path.join(loc, 'rt-polarity.pos'), 'rb') as f:
for line in f:
pos.append(line.decode('latin-1').strip())
with open(os.path.join(loc, 'rt-polarity.neg'), 'rb') as f:
for line in f:
neg.append(line.decode('latin-1').strip())
return pos, neg
def load_subj(loc='./data/'):
"""
Load the SUBJ dataset
"""
pos, neg = [], []
with open(os.path.join(loc, 'plot.tok.gt9.5000'), 'rb') as f:
for line in f:
pos.append(line.decode('latin-1').strip())
with open(os.path.join(loc, 'quote.tok.gt9.5000'), 'rb') as f:
for line in f:
neg.append(line.decode('latin-1').strip())
return pos, neg
def load_cr(loc='./data/'):
"""
Load the CR dataset
"""
pos, neg = [], []
with open(os.path.join(loc, 'custrev.pos'), 'rb') as f:
for line in f:
text = line.strip()
if len(text) > 0:
pos.append(text)
with open(os.path.join(loc, 'custrev.neg'), 'rb') as f:
for line in f:
text = line.strip()
if len(text) > 0:
neg.append(text)
return pos, neg
def load_mpqa(loc='./data/'):
"""
Load the MPQA dataset
"""
pos, neg = [], []
with open(os.path.join(loc, 'mpqa.pos'), 'rb') as f:
for line in f:
text = line.strip()
if len(text) > 0:
pos.append(text)
with open(os.path.join(loc, 'mpqa.neg'), 'rb') as f:
for line in f:
text = line.strip()
if len(text) > 0:
neg.append(text)
return pos, neg
def compute_labels(pos, neg):
"""
Construct list of labels
"""
labels = np.zeros(len(pos) + len(neg))
labels[:len(pos)] = 1.0
labels[len(pos):] = 0.0
return labels
def shuffle_data(X, L, seed=1234):
"""
Shuffle the data
"""
prng = RandomState(seed)
inds = np.arange(len(X))
prng.shuffle(inds)
X = [X[i] for i in inds]
L = L[inds]
return (X, L)