-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_figureS2.R
197 lines (170 loc) · 6.39 KB
/
plot_figureS2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
################################################################################
# libraries #
################################################################################
library(tidyverse)
library(patchwork)
################################################################################
# functions #
################################################################################
# return PCA plot object
make_pca_plot <- function(tbl, x, y){
return(
ggplot(data = tbl, mapping = aes(x = {{x}}, y = {{y}})) +
geom_point(mapping = aes(color = location, shape = taxonomy), size = 1.2) +
scale_shape_manual(name = "Taxonomy", values = shapes) +
scale_color_manual(name = "Location", values = palette) +
theme_light() +
theme(
axis.title = element_text(size = 8),
axis.text = element_blank(),
axis.ticks = element_blank()
) +
guides(
color = guide_legend(title.position = "top"),
shape = guide_legend(title.position = "top", direction = "vertical")
)
)
}
################################################################################
# configurations #
################################################################################
# set subspecies factor levels
lvls.1 <- c(
"Nubian",
"Reticulated",
"Masai s. str."
)
# set location factor levels
lvls.2 <- c(
"Gambella NP",
"Murchison Falls NP",
"Ruma NP",
"Kigio Wildlife Conservancy",
"Lake Nakuru NP",
"Soysambu Conservancy",
"Mwea NR",
"Aberdare Country Club",
"El Karama Conservancy",
"Loisaba Conservancy",
"Mpala Conservancy",
"Ol Pejeta Conservancy",
"Solio GR",
"Buffalo Springs NR",
"Meru NP",
"Samburu NR",
"Garissa",
"Ishaqbini Conservancy",
"Selous GR",
"Masai Mara",
"Hell's Gate NP",
"Naivasha (Private Ranches)",
"Ngong",
"Amboseli NP",
"Mbirikani",
"Nairobi NP",
"Tsavo West NP",
"Tsavo East NP"
)
# set shapes
shapes <- set_names(c(18, 15, 17), lvls.1)
# set color palette
nub.cols <- colorRampPalette(colors = c("#893c00", "#d55e00", "#e18e4c", "#ffaf70"))(7)
ret.cols <- colorRampPalette(colors = c("#b44582", "#cc79a7", "#e1b0cb", "#efd5e3"))(11)
mas.cols <- colorRampPalette(colors = c("#006c4d", "#009f72", "#66c5aa", "#b2e2d4"))(10)
palette <- set_names(c(nub.cols, ret.cols, mas.cols), lvls.2)
# set theme modifiers for pca plots
no.axis.title.x <- theme(axis.title.x = element_blank())
no.axis.title.y <- theme(axis.title.y = element_blank())
no.axis.title <- theme(axis.title = element_blank())
################################################################################
# preparation #
################################################################################
# set working directory
setwd("~/documents/rcoimbra_phd/project_kenya")
# read bamlist used with ANGSD
bams <- read_table("results/04_pca/bamlist", col_names = FALSE)
# import metadata
metadata <- read_csv("metadata.csv")
# create tibble with samples information
sample.info <- pull(bams, 1) %>%
str_replace_all(c("/.*/" = "", ".clean.bam" = "")) %>%
as_tibble_col(column_name = "id") %>%
left_join(metadata) %>%
mutate(
taxonomy = case_when(
str_detect(taxonomy, regex("Giraffa tippelskirchi tippelskirchi")) ~ "Masai s. str.",
str_detect(taxonomy, regex("Giraffa camelopardalis camelopardalis")) ~ "Nubian",
str_detect(taxonomy, regex("Giraffa reticulata")) ~ "Reticulated",
TRUE ~ NA_character_
)
) %>%
mutate(
taxonomy = fct_relevel(taxonomy, lvls.1),
location = fct_relevel(location, lvls.2)
)
# clean environment
rm(bams, metadata)
################################################################################
# pca #
################################################################################
# set working directory
setwd("~/documents/rcoimbra_phd/project_kenya/results/04_pca/")
# read covariance matrix generated with PCAngsd
cov.mat <- read_delim("snps.hwe_filter.cov", delim = " ", col_names = FALSE)
# perform PCA
pca <- prcomp(cov.mat, scale = TRUE)
# bind columns of PC coordinates to tibble with sample information
tbl <- sample.info %>% bind_cols(as_tibble(pca$x))
# caculate eigenvalues and percentage of variance explained
eigenvals <- pca$sdev ^ 2
eigen <- tibble(
prin.comp = c(seq(1, length(eigenvals))),
var.percent = eigenvals / sum(eigenvals) * 100,
cum.sum = cumsum(var.percent)
)
# scree plot
p0 <- ggplot(eigen, aes(x = prin.comp, y = var.percent)) +
geom_col(fill = heat.colors(length(eigenvals))) +
labs(
x = "Principal components",
y = "Explained variance (%)"
) +
theme_light() +
theme(
axis.title = element_text(size = 8),
axis.text = element_text(size = 6)
)
# pca plots
p12 <- make_pca_plot(tbl, PC1, PC2) + no.axis.title.x
p13 <- make_pca_plot(tbl, PC1, PC3) + no.axis.title.x
p14 <- make_pca_plot(tbl, PC1, PC4)
p23 <- make_pca_plot(tbl, PC2, PC3) + no.axis.title
p24 <- make_pca_plot(tbl, PC2, PC4) + no.axis.title.y
p34 <- make_pca_plot(tbl, PC3, PC4) + no.axis.title.y
# clean environment
rm(sample.info, cov.mat)
################################################################################
# figure #
################################################################################
# arrange composite plot layout
wrap_plots(
A = p12, B = p13, C = p14, D = p23, E = p24, F = p34, G = p0,
guides = "collect",
design = "A#G
BD#
CEF"
) & theme(
legend.title = element_text(size = 7, face = "bold"),
legend.text = element_text(size = 7),
legend.key.size = unit(0.5, "lines"),
legend.position = "bottom"
)
# save figure in '.png' format
ggsave(
filename = "figureS2.png",
path = "~/documents/rcoimbra_phd/project_kenya/figures/revised",
width = 210,
height = 230,
units = "mm",
dpi = 300
)