-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_figure1b-e.R
361 lines (313 loc) · 12.4 KB
/
plot_figure1b-e.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
################################################################################
# libraries #
################################################################################
library(ggcorrplot)
library(patchwork)
library(tidyverse)
################################################################################
# functions #
################################################################################
# source modified r script from evaladmix
source("~/documents/rcoimbra_phd/project_kenya/results/05_admixture/visFuns_modified.R")
# return tibble of ancestry proportions
make_ancestry_tibble <- function(file, tbl){
return(
read_table(file, col_names = FALSE) %>%
select(!last_col()) %>%
mutate(
sample_id = tbl$id,
subspecies = tbl$taxonomy,
location = tbl$location
) %>%
pivot_longer(
cols = starts_with("X"),
names_to = "ancestry",
values_to = "probability"
) %>%
arrange(subspecies, location)
)
}
# return ancestry plot object
make_ancestry_plot <- function(tbl, palette){
return(
ggplot(tbl, aes(x = sample_id, y = probability, fill = ancestry)) +
geom_col() +
facet_grid(
cols = vars(fct_inorder(location)),
scales = 'free',
space = 'free'
) +
scale_y_continuous(expand = c(0, 0), breaks = c(seq(0, 1, 0.2))) +
scale_fill_manual(values = palette, guide = "none") +
labs(
x = "Individuals",
y = paste("K =", length(unique(tbl$ancestry)))
) +
theme_minimal() +
theme(
panel.spacing.x = unit(0, "lines"),
axis.title = element_text(size = 7.5),
axis.text.x = element_blank(),
axis.text.y = element_text(size = 5.8),
axis.ticks.length.y = unit(0, "lines"),
strip.text = element_blank(),
strip.background = element_blank(),
panel.border = element_rect(linewidth = 0.6, color = "grey80", fill = NA),
panel.grid = element_blank()
)
)
}
################################################################################
# configurations #
################################################################################
# set subspecies factor levels
lvls.1 <- c("Nubian", "Reticulated", "Masai s. str.")
# set location factor levels
lvls.2 <- c(
"Gambella NP",
"Murchison Falls NP",
"Ruma NP",
"Kigio Wildlife Conservancy",
"Lake Nakuru NP",
"Soysambu Conservancy",
"Mwea NR",
"Aberdare Country Club",
"El Karama Conservancy",
"Loisaba Conservancy",
"Mpala Conservancy",
"Ol Pejeta Conservancy",
"Solio GR",
"Buffalo Springs NR",
"Meru NP",
"Samburu NR",
"Garissa",
"Ishaqbini Conservancy",
"Selous GR",
"Masai Mara",
"Hell's Gate NP",
"Naivasha (Private Ranches)",
"Ngong",
"Amboseli NP",
"Mbirikani",
"Nairobi NP",
"Tsavo West NP",
"Tsavo East NP"
)
# set color palette
palette <- set_names(c("#d55e00", "#cc79a7", "#009e73"), lvls.1)
# set shapes
shapes <- set_names(c(18, 15, 17), lvls.1)
################################################################################
# preparation #
################################################################################
# set working directory
setwd("~/documents/rcoimbra_phd/project_kenya")
# read bamlist used with ANGSD
bams <- read_table("results/04_pca/bamlist", col_names = FALSE)
# import metadata
metadata <- read_csv("metadata.csv")
# create tibble with samples information
sample.info <- pull(bams, 1) %>%
str_replace_all(c("/.*/" = "", ".clean.bam" = "")) %>%
as_tibble_col(column_name = "id") %>%
left_join(metadata) %>%
mutate(
taxonomy = case_when(
str_detect(taxonomy, regex("Giraffa tippelskirchi tippelskirchi")) ~ "Masai s. str.",
str_detect(taxonomy, regex("Giraffa camelopardalis camelopardalis")) ~ "Nubian",
str_detect(taxonomy, regex("Giraffa reticulata")) ~ "Reticulated",
TRUE ~ NA_character_
)
) %>%
mutate(
taxonomy = fct_relevel(taxonomy, lvls.1),
location = fct_relevel(location, lvls.2)
)
# clean environment
rm(bams, metadata)
################################################################################
# pca #
################################################################################
# set working directory
setwd("~/documents/rcoimbra_phd/project_kenya/results/04_pca/")
# read covariance matrix generated with PCAngsd
cov.mat <- read_delim("snps.hwe_filter.cov", delim = " ", col_names = FALSE)
# perform PCA
pca <- prcomp(cov.mat, scale = TRUE)
# bind columns of PC coordinates to tibble with sample information
tbl <- sample.info %>% bind_cols(as_tibble(pca$x))
# caculate eigenvalues and percentage of variance explained
eigenvals <- pca$sdev ^ 2
eigen <- tibble(
prin.comp = c(seq(1, length(eigenvals))),
var.percent = eigenvals / sum(eigenvals) * 100,
cum.sum = cumsum(var.percent)
)
# pca plot
panel.b <- ggplot(data = tbl, mapping = aes(x = PC1, y = PC2)) +
geom_point(mapping = aes(color = taxonomy, shape = taxonomy), size = 1.4) +
scale_shape_manual(values = shapes) +
scale_color_manual(values = palette) +
labs(
x = paste0("PC1 (", round(eigen$var.percent[1], 2), "%)"),
y = paste0("PC2 (", round(eigen$var.percent[2], 2), "%)")
) +
theme_light() +
theme(
axis.title = element_text(size = 7.5),
axis.text = element_blank(),
axis.ticks = element_blank(),
legend.title = element_blank(),
legend.text = element_text(size = 5.8),
legend.key.size = unit(0.15, "lines"),
legend.background = element_rect(fill = "transparent"),
legend.position = c(0.24, 0.13)
) +
guides(shape = guide_legend(override.aes = list(size = 1.4)))
# clean environment
rm(sample.info, cov.mat)
################################################################################
# admixture #
################################################################################
# set working directory
setwd("~/documents/rcoimbra_phd/project_kenya/results/05_admixture/")
# get input file names
files <- str_sort(list.files(pattern = ".qopt"), numeric = TRUE)
# generate tibble of ancestry proportions
qopts <- files %>% map(make_ancestry_tibble, tbl = tbl)
# plot ancestry porportions
p.k3 <- make_ancestry_plot(qopts[[3]], c("#009f72", "#cc79a7", "#d55e00")) +
theme(axis.title.x = element_blank())
p.k9 <- make_ancestry_plot(qopts[[9]], c("#cc79a7", "#b44582", "#e18e4c", "#006c4d", "#954100", "#d55e00", "#b2e2d4", "#66c5aa", "#009f72"))
# arrange composite plot layout
panel.c <- p.k3 / (p.k9 + plot_layout(tag_level = 'new'))
################################################################################
# likelihoods per k #
################################################################################
# find input files
files <- str_sort(list.files(pattern = "likelihoods*"), numeric = TRUE)
# create a tibble of run likelihoods
tbl.likes <- files %>%
map_dfr(read_table, col_names = FALSE, .id = "k") %>%
rename(likelihoods = X1) %>%
group_by(k) %>%
summarize(
n = n(),
mean = mean(likelihoods),
sd = sd(likelihoods)
) %>%
mutate(
k = fct_relevel(k, as.character(seq(1, length(k)))),
se = sd / sqrt(n)
)
# plot likelihoods across runs per k
panel.d <- ggplot(tbl.likes, aes(x = k, y = mean)) +
geom_line(aes(group = 1), linewidth = 0.25, alpha = 0.5) +
geom_point(size = 1.2, color = "red", alpha = 0.5) +
geom_errorbar(aes(ymin = mean - se, ymax = mean + se), width = 0.5, color = "red", alpha = 0.5) +
labs(
x = expression(italic("K")),
y = expression(paste("Mean L(", italic("K"), ") \u00B1 SE"))
) +
theme_light() +
theme(
axis.title = element_text(size = 7.5),
axis.text = element_text(size = 5.8),
axis.text.y = element_text(angle = 90, hjust = 0.5),
legend.position = "none"
)
################################################################################
# evaladmix #
################################################################################
# find input files
files <- c(
str_sort(list.files(pattern = ".qopt"), numeric = TRUE),
str_sort(list.files(pattern = ".txt"), numeric = TRUE)
)
pop <- tbl %>% select(location, id) %>% as.data.frame()
for(i in c(3, 9)) {
q <- read_table(files[i], col_names = FALSE) %>%
select(!last_col()) %>%
as.data.frame()
ord <- orderInds(pop = as.vector(pop[, 1]), popord = lvls.2)
r <- read.table(files[i + 11])
assign(
paste0("mat", i),
plotCorRes(
cor_mat = r,
pop = as.vector(pop[, 1]),
superpop = as.vector(tbl$taxonomy),
ord = ord,
title = paste0("Correlation of residuals for K=", i),
max_z = 0.5,
min_z = -0.5,
cex.main = 1.2,
cex.lab = 0.4,
cex.lab.2 = 1,
cex.legend = 1.2,
rotatelabpop = 90,
adjlab = 0.015,
adjlabsuperpop = 0.165,
pop_labels = c(TRUE, TRUE),
lineswidth = 0.5,
lineswidthsuperpop = 1.5
)
)
}
mat3 <- as.data.frame(mat3) %>%
mutate_all(~ifelse(is.nan(.), NA, .))
mat9 <- as.data.frame(mat9) %>%
mutate_all(~ifelse(is.nan(.), NA, .))
m3 <- ggcorrplot(mat3, type = "full", show.diag = TRUE, show.legend = FALSE) +
scale_fill_gradientn(
colors = c("#009ACD", "white", "#ED5504"),
limit = c(-0.5, 0.5)
) +
labs(fill = "Population\nmean corr.") +
geom_vline(xintercept = c(7.5, 18.5), linewidth = 0.5, color = "grey50") +
geom_hline(yintercept = c(7.5, 18.5), linewidth = 0.5, color = "grey50") +
theme(
axis.text.x = element_blank(),
axis.text.y = element_blank(),
panel.background = element_rect(fill = "grey", colour = "transparent"),
panel.grid = element_blank()
)
m9 <- ggcorrplot(mat9, type = "full", show.diag = TRUE) +
scale_fill_gradientn(
colors = c("#009ACD", "white", "#ED5504"),
limit = c(-0.5, 0.5)
) +
labs(fill = "Population\nmean corr.") +
geom_vline(xintercept = c(7.5, 18.5), linewidth = 0.5, color = "grey50") +
geom_hline(yintercept = c(7.5, 18.5), linewidth = 0.5, color = "grey50") +
theme(
axis.text.x = element_blank(),
axis.text.y = element_blank(),
legend.title = element_text(size = 7.5),
legend.text = element_text(size = 5.8),
legend.key.width = unit(1, "lines"),
legend.key.height = unit(1, "lines"),
legend.text.align = 1,
panel.background = element_rect(fill = "grey", colour = "transparent"),
panel.grid = element_blank()
)
# arrange composite plot layout
panel.e <- (m3 | (m9 + plot_layout(tag_level = 'new'))) + plot_layout(guides = "collect")
################################################################################
# figure #
################################################################################
# set spacer plot that can be tagged
spacer <- ggplot() + theme_void()
# arrange figure layout
( spacer / (( panel.b | panel.c ) + plot_layout(ncol = 2, widths = c(1/4, 3/4))) / ((panel.d + panel.e + guide_area()) + plot_layout(ncol = 3, widths = c(1/3, 2/3, 0))) ) +
plot_layout(nrow = 3, heights = c(2/3, 1/5, 1/5)) +
plot_annotation(tag_levels = c("a"))
# save figure in '.tiff' format
ggsave(
filename = "figure1.tiff",
path = "~/documents/rcoimbra_phd/project_kenya/figures/revised/",
width = 174,
height = 230,
units = "mm",
dpi = 600
)