-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdual.py
336 lines (265 loc) · 9.28 KB
/
dual.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
# -*- coding: utf-8 -*-
"""
Created on Thu Dec 8 19:05:38 2022
@author: rlabbe
"""
from dataclasses import dataclass
import math
# try/except blocks test faster than isinstance for simple expressions
# I use x instead of self to make binary operators more readable
#
# floating points and int define .real property, where 3.4.real == real,
# so I use real as the real part of the dual number. This has the additional
# advantage of duck typing in some of the operators working
@dataclass
class Dual:
real : float # real part
dual : float = 0 # infitesimal part
def __pos__(self):
return self
def __neg__(self):
return Dual(-self.real, -self.dual)
def conj(self):
return Dual(self.real, -self.dual)
def __abs__(self):
return Dual(abs(self.real), abs(self.dual))
def __add__(self, y):
try:
return Dual(self.real + y.real, self.dual + y.dual)
except AttributeError:
return Dual(self.real + y, self.dual)
def __radd__(self, y):
return Dual(self.real + y, self.dual)
def __sub__(self, y):
try:
return Dual(self.real - y.real, self.dual - y.dual)
except AttributeError:
return Dual(self.real - y, self.dual)
def __rsub__(self, y):
return Dual(y - self.real, -self.dual)
def __mul__(self, y):
try:
return Dual(self.real * y.real, (self.real * y.dual) + (self.dual * y.real))
except AttributeError:
return Dual(self.real * y, self.dual * y)
def __rmul__(self, y):
return Dual(self.real * y, self.dual*y)
def __eq__(self, y):
try:
return self.real == y.real and self.dual == y.dual
except AttributeError:
return self.real == y
def __pow__(self, y):
""" x**y """
# this is tricky
# (x + dx)^(y + dy) ~= x^y + x^(y - 1) * (y * dx + x * log(x) * dy)
# x == 0 and y > 1: (x + dx)^(y + dy) ~= 0
# x == 0 and y == 1: (x + dx)^(y + dy) ~= 0 + dx
# x == 0 and 0 < y < 1: The value is finite but the derivatives are not.
# x == 0 and y < 0: The value and derivatives ox x^y are not finite.
# x == 0 and y == 0: has no meaning, and there is no way to compute the derivative.
# x < 0, y integer, dy == 0: (x + dx)^(y + dy) ~= x^y + y * x^(y - 1) dx
# x < 0, y integer, dy != 0 derivatives are not finite
# x < 0, y noninteger: neither value or derivative is finite
if not isinstance(y, Dual):
y = Dual(y, 0)
if self.real == 0 and y.real >= 1:
if y.real > 1:
return Dual(0,0);
else:
return self;
if self.real < 0 and y == math.floor(y.real):
tmp = y.real * math.pow(self.real, y.real - 1)
return Dual(math.pow(self.real, y.real), tmp * self.dual)
else:
tmp1 = math.pow(self.real, y.real)
tmp2 = y.real * math.pow(self.real, y.real - 1)
tmp3 = tmp1 * math.log(self.real)
return Dual(tmp1, tmp2 * self.dual + tmp3 * y.dual)
def __rpow__(self, y):
# y**x, if expression is 3 ** Dual(4),then x = Dual(4), y = 3
real = y ** self.real
return Dual(real, real*(self.dual * math.log(y.real)))
def __truediv__(self, y):
y_real_inv = 1. / y.real
try:
real_div = self.real * y_real_inv
return Dual(real_div, (self.dual - real_div*y.dual) * y_real_inv)
except AttributeError:
return Dual(self.real * y_real_inv, self.dual * y_real_inv)
def __rtruediv__(self, y):
y = Dual(y, 0)
return y / self
def __hash__(self):
return hash(self.real + self.dual*1j) # use builtin hash for complex
def __repr__(self):
if self.dual >= 0:
return f'{self.real} + {self.dual}ε'
else:
return f'{self.real} - {-self.dual}ε'
def as_dual(x):
if isinstance(x, Dual):
return x
return Dual(x.real, 0.)
def sin(x):
"""Return the sine of x (measured in radians)."""
if isinstance(x, Dual):
# sin(a + h) ~= sin(a) + cos(a) h
a = x.real
return Dual(math.sin(a), math.cos(a)*x.dual)
else:
return math.sin(x)
def asin(x):
"""Return the arc sine (measured in radians) of x."""
if isinstance(x, Dual):
# asin(a + h) ~= asin(a) + 1 / sqrt(1 - a^2) h
a = x.real
return Dual(math.asin(a), x.dual / math.sqrt(1 - a*a))
else:
return math.asin(x)
def cos(x):
"""Return the cosine of x (measured in radians)."""
if isinstance(x, Dual):
# cos(a + h) ~= cos(a) - sin(a) h
a = x.real
return Dual(math.cos(a), -math.sin(a)*x.dual)
else:
return math.cos(x)
def acos(x):
"""Return the arc cosine (measured in radians) of x."""
if isinstance(x, Dual):
# acos(a + h) ~= acos(a) - 1 / sqrt(1 - a^2) h
a = x.real
return Dual(math.acos(a), x.dual / math.sqrt(1 - a*a))
else:
return math.acos(x)
def tan(x):
"""Return the tangent of x (measured in radians)."""
if isinstance(x, Dual):
# tan(a + h) ~= tan(a) + (1 + tan(a)^2) h
tana = math.tan(x.real)
return Dual(tana, x.dual * (1 + tana*tana))
else:
return math.tan(x)
def atan(x):
"""Return the arc tangent (measured in radians) of x."""
if isinstance(x, Dual):
# atan(a + h) ~= atan(a) + 1 / (1 + a^2) h
a = x.real
atana = math.atan(a)
return Dual(atana, x.dual / (1 + a*a))
else:
return math.atan(x)
def sinh(x):
"""Return the hyperbolic sine of x (measured in radians)."""
if isinstance(x, Dual):
# sinh(a + h) ~= sinh(a) + cosh(a) h
a = x.real
return Dual(math.sinh(a), math.cosh(a)*x.dual)
else:
return math.sinh(x)
def cosh(x):
"""Return the hyperbolic cosine of x (measured in radians)."""
if isinstance(x, Dual):
# cosh(a + h) ~= cosh(a) + sinh(a) h
a = x.real
return Dual(math.cosh(a), math.sinh(a)*x.dual)
else:
return math.cos(x)
def tanh(x):
"""Return the hyperbolic tangent of x (measured in radians)."""
if isinstance(x, Dual):
# tanh(a + h) ~= tanh(a) + (1 - tanh(a)^2) h
tana = math.tan(x.real)
return Dual(tana, x.dual * (1 + tana*tana))
else:
return math.tan(x)
def exp(x):
"""Return e raised to the power of x."""
if isinstance(x, Dual):
# exp(a+h) ~= exp(a) + exp(a)h
e = math.exp(x.real)
d = e * x.dual
if d == float('inf'):
raise OverflowError
return Dual(e, e*x.dual)
else:
return math.exp(x)
def expm1(x):
"""Return exp(x)-1.
This function avoids the loss of precision involved in the direct
evaluation of exp(x)-1 for small x.
"""
if isinstance(x, Dual):
# expm1(a + h) ~= expm1(a) + exp(a) e
em1 = math.expm1(x.real)
return Dual(em1, (1+em1)*x.dual)
else:
return math.expm1(x)
def log(x):
"""Return the logarithm of x in base e."""
if isinstance(x, Dual):
return Dual(math.log(x.real), x.dual / x.real)
else:
return math.log(x)
def log10(x):
"""Return the base 10 logarithm of x."""
if isinstance(x, Dual):
# log10(a + h) ~= log10(a) + h / (a log(10))
# log(10) == 2.3025850929940459
return Dual(math.log10(x.real), x.dual / 2.3025850929940459)
else:
return math.log10(x)
def log1p(x):
"""Return the natural logarithm of 1+x (base e)."""
if isinstance(x, Dual):
# log1p(a + h) ~= log1p(a) + h / (1 + a)
# log(10) == 2.3025850929940459
return Dual(math.log10(x.real), x.dual / (1. + x.real))
else:
return math.log1p(x)
def log2(x):
"""Return the base 2 logarithm of x."""
if isinstance(x, Dual):
# log2(x + h) ~= log2(x) + h / (x * log(2))
# log(2) == 0.693147180559945286
real = x.real
return Dual(math.log2(real), x.dual / (real * 0.693147180559945286))
else:
return math.log2(x)
def cbrt(x):
"""Return the cube-root of x."""
if isinstance(x, Dual):
# cbrt(a + h) ~= cbrt(a) + h / (3 a ^ (2/3))
real = x.real
cr = math.pow(real, 1./3)
return Dual(cr, x.dual / (3 * cr * cr))
def hypot(x, y):
"""Roughly the hypotenuse using the Pythagorean theorem: sqrt(x*x + y*y),
but acts to prevent underflow and overflow.
"""
x_is_dual = isinstance(x, Dual)
y_is_dual = isinstance(y, Dual)
if x_is_dual and not y_is_dual:
y = Dual(y, 0)
elif y_is_dual and not x_is_dual:
x = Dual(x, 0)
x_is_dual = True
if x_is_dual:
h = math.hypot(x.real, y.real)
return Dual(h, (x.real * x.dual + y.real * y.dual) / h)
else:
return math.hypot(x, y)
def sqrt(x):
"""Return the square root of x."""
if isinstance(x, Dual):
tmp = math.sqrt(x.real)
return Dual(tmp, x.dual / (2. * tmp))
else:
return math.sqrt(x)
def near_eq(x:Dual, y:Dual, eps: float = 1e-12):
"""Returns true iff both the real and dual components of x and y are
nearly equal (within eps).
"""
diff = x - y
return abs(diff.real) <= eps and abs(diff.dual) <= eps