-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathlibdivide.h
3329 lines (2931 loc) · 127 KB
/
libdivide.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// libdivide.h - Optimized integer division
// https://libdivide.com
//
// Copyright (C) 2010 - 2022 ridiculous_fish, <[email protected]>
// Copyright (C) 2016 - 2022 Kim Walisch, <[email protected]>
//
// libdivide is dual-licensed under the Boost or zlib licenses.
// You may use libdivide under the terms of either of these.
// See LICENSE.txt for more details.
#ifndef LIBDIVIDE_H
#define LIBDIVIDE_H
// *** Version numbers are auto generated - do not edit ***
#define LIBDIVIDE_VERSION "5.1.0"
#define LIBDIVIDE_VERSION_MAJOR 5
#define LIBDIVIDE_VERSION_MINOR 1
#define LIBDIVIDE_VERSION_PATCH 0
#include <stdint.h>
#if !defined(__AVR__)
#include <stdio.h>
#include <stdlib.h>
#endif
#if defined(LIBDIVIDE_SSE2)
#include <emmintrin.h>
#endif
#if defined(LIBDIVIDE_AVX2) || defined(LIBDIVIDE_AVX512)
#include <immintrin.h>
#endif
#if defined(LIBDIVIDE_NEON)
#include <arm_neon.h>
#endif
// Clang-cl prior to Visual Studio 2022 doesn't include __umulh/__mulh intrinsics
#if defined(_MSC_VER) && defined(LIBDIVIDE_X86_64) && (!defined(__clang__) || _MSC_VER>1930)
#define LIBDIVIDE_X64_INTRINSICS
#endif
#if defined(_MSC_VER)
#if defined(LIBDIVIDE_X64_INTRINSICS)
#include <intrin.h>
#endif
#pragma warning(push)
// disable warning C4146: unary minus operator applied
// to unsigned type, result still unsigned
#pragma warning(disable : 4146)
// disable warning C4204: nonstandard extension used : non-constant aggregate
// initializer
//
// It's valid C99
#pragma warning(disable : 4204)
#define LIBDIVIDE_VC
#endif
#if !defined(__has_builtin)
#define __has_builtin(x) 0
#endif
#if defined(__SIZEOF_INT128__)
#define HAS_INT128_T
// clang-cl on Windows does not yet support 128-bit division
#if !(defined(__clang__) && defined(LIBDIVIDE_VC))
#define HAS_INT128_DIV
#endif
#endif
#if defined(__x86_64__) || defined(_M_X64)
#define LIBDIVIDE_X86_64
#endif
#if defined(__i386__)
#define LIBDIVIDE_i386
#endif
#if defined(__GNUC__) || defined(__clang__)
#define LIBDIVIDE_GCC_STYLE_ASM
#endif
#if defined(__cplusplus) || defined(LIBDIVIDE_VC)
#define LIBDIVIDE_FUNCTION __FUNCTION__
#else
#define LIBDIVIDE_FUNCTION __func__
#endif
// Set up forced inlining if possible.
// We need both the attribute and keyword to avoid "might not be inlineable" warnings.
#ifdef __has_attribute
#if __has_attribute(always_inline)
#define LIBDIVIDE_INLINE __attribute__((always_inline)) inline
#endif
#endif
#ifndef LIBDIVIDE_INLINE
#define LIBDIVIDE_INLINE inline
#endif
#if defined(__AVR__)
#define LIBDIVIDE_ERROR(msg)
#else
#define LIBDIVIDE_ERROR(msg) \
do { \
fprintf(stderr, "libdivide.h:%d: %s(): Error: %s\n", __LINE__, LIBDIVIDE_FUNCTION, msg); \
abort(); \
} while (0)
#endif
#if defined(LIBDIVIDE_ASSERTIONS_ON) && !defined(__AVR__)
#define LIBDIVIDE_ASSERT(x) \
do { \
if (!(x)) { \
fprintf(stderr, "libdivide.h:%d: %s(): Assertion failed: %s\n", __LINE__, \
LIBDIVIDE_FUNCTION, #x); \
abort(); \
} \
} while (0)
#else
#define LIBDIVIDE_ASSERT(x)
#endif
#ifdef __cplusplus
namespace libdivide {
#endif
// pack divider structs to prevent compilers from padding.
// This reduces memory usage by up to 43% when using a large
// array of libdivide dividers and improves performance
// by up to 10% because of reduced memory bandwidth.
#pragma pack(push, 1)
struct libdivide_u16_t {
uint16_t magic;
uint8_t more;
};
struct libdivide_s16_t {
int16_t magic;
uint8_t more;
};
struct libdivide_u32_t {
uint32_t magic;
uint8_t more;
};
struct libdivide_s32_t {
int32_t magic;
uint8_t more;
};
struct libdivide_u64_t {
uint64_t magic;
uint8_t more;
};
struct libdivide_s64_t {
int64_t magic;
uint8_t more;
};
struct libdivide_u16_branchfree_t {
uint16_t magic;
uint8_t more;
};
struct libdivide_s16_branchfree_t {
int16_t magic;
uint8_t more;
};
struct libdivide_u32_branchfree_t {
uint32_t magic;
uint8_t more;
};
struct libdivide_s32_branchfree_t {
int32_t magic;
uint8_t more;
};
struct libdivide_u64_branchfree_t {
uint64_t magic;
uint8_t more;
};
struct libdivide_s64_branchfree_t {
int64_t magic;
uint8_t more;
};
#pragma pack(pop)
// Explanation of the "more" field:
//
// * Bits 0-5 is the shift value (for shift path or mult path).
// * Bit 6 is the add indicator for mult path.
// * Bit 7 is set if the divisor is negative. We use bit 7 as the negative
// divisor indicator so that we can efficiently use sign extension to
// create a bitmask with all bits set to 1 (if the divisor is negative)
// or 0 (if the divisor is positive).
//
// u32: [0-4] shift value
// [5] ignored
// [6] add indicator
// magic number of 0 indicates shift path
//
// s32: [0-4] shift value
// [5] ignored
// [6] add indicator
// [7] indicates negative divisor
// magic number of 0 indicates shift path
//
// u64: [0-5] shift value
// [6] add indicator
// magic number of 0 indicates shift path
//
// s64: [0-5] shift value
// [6] add indicator
// [7] indicates negative divisor
// magic number of 0 indicates shift path
//
// In s32 and s64 branchfree modes, the magic number is negated according to
// whether the divisor is negated. In branchfree strategy, it is not negated.
enum {
LIBDIVIDE_16_SHIFT_MASK = 0x1F,
LIBDIVIDE_32_SHIFT_MASK = 0x1F,
LIBDIVIDE_64_SHIFT_MASK = 0x3F,
LIBDIVIDE_ADD_MARKER = 0x40,
LIBDIVIDE_NEGATIVE_DIVISOR = 0x80
};
static LIBDIVIDE_INLINE struct libdivide_s16_t libdivide_s16_gen(int16_t d);
static LIBDIVIDE_INLINE struct libdivide_u16_t libdivide_u16_gen(uint16_t d);
static LIBDIVIDE_INLINE struct libdivide_s32_t libdivide_s32_gen(int32_t d);
static LIBDIVIDE_INLINE struct libdivide_u32_t libdivide_u32_gen(uint32_t d);
static LIBDIVIDE_INLINE struct libdivide_s64_t libdivide_s64_gen(int64_t d);
static LIBDIVIDE_INLINE struct libdivide_u64_t libdivide_u64_gen(uint64_t d);
static LIBDIVIDE_INLINE struct libdivide_s16_branchfree_t libdivide_s16_branchfree_gen(int16_t d);
static LIBDIVIDE_INLINE struct libdivide_u16_branchfree_t libdivide_u16_branchfree_gen(uint16_t d);
static LIBDIVIDE_INLINE struct libdivide_s32_branchfree_t libdivide_s32_branchfree_gen(int32_t d);
static LIBDIVIDE_INLINE struct libdivide_u32_branchfree_t libdivide_u32_branchfree_gen(uint32_t d);
static LIBDIVIDE_INLINE struct libdivide_s64_branchfree_t libdivide_s64_branchfree_gen(int64_t d);
static LIBDIVIDE_INLINE struct libdivide_u64_branchfree_t libdivide_u64_branchfree_gen(uint64_t d);
static LIBDIVIDE_INLINE int16_t libdivide_s16_do_raw(
int16_t numer, int16_t magic, uint8_t more);
static LIBDIVIDE_INLINE int16_t libdivide_s16_do(
int16_t numer, const struct libdivide_s16_t *denom);
static LIBDIVIDE_INLINE uint16_t libdivide_u16_do_raw(
uint16_t numer, uint16_t magic, uint8_t more);
static LIBDIVIDE_INLINE uint16_t libdivide_u16_do(
uint16_t numer, const struct libdivide_u16_t *denom);
static LIBDIVIDE_INLINE int32_t libdivide_s32_do_raw(
int32_t numer, int32_t magic, uint8_t more);
static LIBDIVIDE_INLINE int32_t libdivide_s32_do(
int32_t numer, const struct libdivide_s32_t *denom);
static LIBDIVIDE_INLINE uint32_t libdivide_u32_do_raw(
uint32_t numer, uint32_t magic, uint8_t more);
static LIBDIVIDE_INLINE uint32_t libdivide_u32_do(
uint32_t numer, const struct libdivide_u32_t *denom);
static LIBDIVIDE_INLINE int64_t libdivide_s64_do_raw(
int64_t numer, int64_t magic, uint8_t more);
static LIBDIVIDE_INLINE int64_t libdivide_s64_do(
int64_t numer, const struct libdivide_s64_t *denom);
static LIBDIVIDE_INLINE uint64_t libdivide_u64_do_raw(
uint64_t numer, uint64_t magic, uint8_t more);
static LIBDIVIDE_INLINE uint64_t libdivide_u64_do(
uint64_t numer, const struct libdivide_u64_t *denom);
static LIBDIVIDE_INLINE int16_t libdivide_s16_branchfree_do(
int16_t numer, const struct libdivide_s16_branchfree_t *denom);
static LIBDIVIDE_INLINE uint16_t libdivide_u16_branchfree_do(
uint16_t numer, const struct libdivide_u16_branchfree_t *denom);
static LIBDIVIDE_INLINE int32_t libdivide_s32_branchfree_do(
int32_t numer, const struct libdivide_s32_branchfree_t *denom);
static LIBDIVIDE_INLINE uint32_t libdivide_u32_branchfree_do(
uint32_t numer, const struct libdivide_u32_branchfree_t *denom);
static LIBDIVIDE_INLINE int64_t libdivide_s64_branchfree_do(
int64_t numer, const struct libdivide_s64_branchfree_t *denom);
static LIBDIVIDE_INLINE uint64_t libdivide_u64_branchfree_do(
uint64_t numer, const struct libdivide_u64_branchfree_t *denom);
static LIBDIVIDE_INLINE int16_t libdivide_s16_recover(const struct libdivide_s16_t *denom);
static LIBDIVIDE_INLINE uint16_t libdivide_u16_recover(const struct libdivide_u16_t *denom);
static LIBDIVIDE_INLINE int32_t libdivide_s32_recover(const struct libdivide_s32_t *denom);
static LIBDIVIDE_INLINE uint32_t libdivide_u32_recover(const struct libdivide_u32_t *denom);
static LIBDIVIDE_INLINE int64_t libdivide_s64_recover(const struct libdivide_s64_t *denom);
static LIBDIVIDE_INLINE uint64_t libdivide_u64_recover(const struct libdivide_u64_t *denom);
static LIBDIVIDE_INLINE int16_t libdivide_s16_branchfree_recover(
const struct libdivide_s16_branchfree_t *denom);
static LIBDIVIDE_INLINE uint16_t libdivide_u16_branchfree_recover(
const struct libdivide_u16_branchfree_t *denom);
static LIBDIVIDE_INLINE int32_t libdivide_s32_branchfree_recover(
const struct libdivide_s32_branchfree_t *denom);
static LIBDIVIDE_INLINE uint32_t libdivide_u32_branchfree_recover(
const struct libdivide_u32_branchfree_t *denom);
static LIBDIVIDE_INLINE int64_t libdivide_s64_branchfree_recover(
const struct libdivide_s64_branchfree_t *denom);
static LIBDIVIDE_INLINE uint64_t libdivide_u64_branchfree_recover(
const struct libdivide_u64_branchfree_t *denom);
//////// Internal Utility Functions
static LIBDIVIDE_INLINE uint16_t libdivide_mullhi_u16(uint16_t x, uint16_t y) {
uint32_t xl = x, yl = y;
uint32_t rl = xl * yl;
return (uint16_t)(rl >> 16);
}
static LIBDIVIDE_INLINE int16_t libdivide_mullhi_s16(int16_t x, int16_t y) {
int32_t xl = x, yl = y;
int32_t rl = xl * yl;
// needs to be arithmetic shift
return (int16_t)(rl >> 16);
}
static LIBDIVIDE_INLINE uint32_t libdivide_mullhi_u32(uint32_t x, uint32_t y) {
uint64_t xl = x, yl = y;
uint64_t rl = xl * yl;
return (uint32_t)(rl >> 32);
}
static LIBDIVIDE_INLINE int32_t libdivide_mullhi_s32(int32_t x, int32_t y) {
int64_t xl = x, yl = y;
int64_t rl = xl * yl;
// needs to be arithmetic shift
return (int32_t)(rl >> 32);
}
static LIBDIVIDE_INLINE uint64_t libdivide_mullhi_u64(uint64_t x, uint64_t y) {
#if defined(LIBDIVIDE_X64_INTRINSICS)
return __umulh(x, y);
#elif defined(HAS_INT128_T)
__uint128_t xl = x, yl = y;
__uint128_t rl = xl * yl;
return (uint64_t)(rl >> 64);
#else
// full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64)
uint32_t mask = 0xFFFFFFFF;
uint32_t x0 = (uint32_t)(x & mask);
uint32_t x1 = (uint32_t)(x >> 32);
uint32_t y0 = (uint32_t)(y & mask);
uint32_t y1 = (uint32_t)(y >> 32);
uint32_t x0y0_hi = libdivide_mullhi_u32(x0, y0);
uint64_t x0y1 = x0 * (uint64_t)y1;
uint64_t x1y0 = x1 * (uint64_t)y0;
uint64_t x1y1 = x1 * (uint64_t)y1;
uint64_t temp = x1y0 + x0y0_hi;
uint64_t temp_lo = temp & mask;
uint64_t temp_hi = temp >> 32;
return x1y1 + temp_hi + ((temp_lo + x0y1) >> 32);
#endif
}
static LIBDIVIDE_INLINE int64_t libdivide_mullhi_s64(int64_t x, int64_t y) {
#if defined(LIBDIVIDE_X64_INTRINSICS)
return __mulh(x, y);
#elif defined(HAS_INT128_T)
__int128_t xl = x, yl = y;
__int128_t rl = xl * yl;
return (int64_t)(rl >> 64);
#else
// full 128 bits are x0 * y0 + (x0 * y1 << 32) + (x1 * y0 << 32) + (x1 * y1 << 64)
uint32_t mask = 0xFFFFFFFF;
uint32_t x0 = (uint32_t)(x & mask);
uint32_t y0 = (uint32_t)(y & mask);
int32_t x1 = (int32_t)(x >> 32);
int32_t y1 = (int32_t)(y >> 32);
uint32_t x0y0_hi = libdivide_mullhi_u32(x0, y0);
int64_t t = x1 * (int64_t)y0 + x0y0_hi;
int64_t w1 = x0 * (int64_t)y1 + (t & mask);
return x1 * (int64_t)y1 + (t >> 32) + (w1 >> 32);
#endif
}
static LIBDIVIDE_INLINE int16_t libdivide_count_leading_zeros16(uint16_t val) {
#if defined(__AVR__)
// Fast way to count leading zeros
// On the AVR 8-bit architecture __builtin_clz() works on a int16_t.
return __builtin_clz(val);
#elif defined(__GNUC__) || __has_builtin(__builtin_clz)
// Fast way to count leading zeros
return __builtin_clz(val) - 16;
#elif defined(LIBDIVIDE_VC)
unsigned long result;
if (_BitScanReverse(&result, (unsigned long)val)) {
return (int16_t)(15 - result);
}
return 0;
#else
if (val == 0) return 16;
int16_t result = 4;
uint16_t hi = 0xFU << 12;
while ((val & hi) == 0) {
hi >>= 4;
result += 4;
}
while (val & hi) {
result -= 1;
hi <<= 1;
}
return result;
#endif
}
static LIBDIVIDE_INLINE int32_t libdivide_count_leading_zeros32(uint32_t val) {
#if defined(__AVR__)
// Fast way to count leading zeros
return __builtin_clzl(val);
#elif defined(__GNUC__) || __has_builtin(__builtin_clz)
// Fast way to count leading zeros
return __builtin_clz(val);
#elif defined(LIBDIVIDE_VC)
unsigned long result;
if (_BitScanReverse(&result, val)) {
return 31 - result;
}
return 0;
#else
if (val == 0) return 32;
int32_t result = 8;
uint32_t hi = 0xFFU << 24;
while ((val & hi) == 0) {
hi >>= 8;
result += 8;
}
while (val & hi) {
result -= 1;
hi <<= 1;
}
return result;
#endif
}
static LIBDIVIDE_INLINE int32_t libdivide_count_leading_zeros64(uint64_t val) {
#if defined(__GNUC__) || __has_builtin(__builtin_clzll)
// Fast way to count leading zeros
return __builtin_clzll(val);
#elif defined(LIBDIVIDE_VC) && defined(_WIN64)
unsigned long result;
if (_BitScanReverse64(&result, val)) {
return 63 - result;
}
return 0;
#else
uint32_t hi = val >> 32;
uint32_t lo = val & 0xFFFFFFFF;
if (hi != 0) return libdivide_count_leading_zeros32(hi);
return 32 + libdivide_count_leading_zeros32(lo);
#endif
}
// libdivide_32_div_16_to_16: divides a 32-bit uint {u1, u0} by a 16-bit
// uint {v}. The result must fit in 16 bits.
// Returns the quotient directly and the remainder in *r
static LIBDIVIDE_INLINE uint16_t libdivide_32_div_16_to_16(
uint16_t u1, uint16_t u0, uint16_t v, uint16_t *r) {
uint32_t n = ((uint32_t)u1 << 16) | u0;
uint16_t result = (uint16_t)(n / v);
*r = (uint16_t)(n - result * (uint32_t)v);
return result;
}
// libdivide_64_div_32_to_32: divides a 64-bit uint {u1, u0} by a 32-bit
// uint {v}. The result must fit in 32 bits.
// Returns the quotient directly and the remainder in *r
static LIBDIVIDE_INLINE uint32_t libdivide_64_div_32_to_32(
uint32_t u1, uint32_t u0, uint32_t v, uint32_t *r) {
#if (defined(LIBDIVIDE_i386) || defined(LIBDIVIDE_X86_64)) && defined(LIBDIVIDE_GCC_STYLE_ASM)
uint32_t result;
__asm__("divl %[v]" : "=a"(result), "=d"(*r) : [v] "r"(v), "a"(u0), "d"(u1));
return result;
#else
uint64_t n = ((uint64_t)u1 << 32) | u0;
uint32_t result = (uint32_t)(n / v);
*r = (uint32_t)(n - result * (uint64_t)v);
return result;
#endif
}
// libdivide_128_div_64_to_64: divides a 128-bit uint {numhi, numlo} by a 64-bit uint {den}. The
// result must fit in 64 bits. Returns the quotient directly and the remainder in *r
static LIBDIVIDE_INLINE uint64_t libdivide_128_div_64_to_64(
uint64_t numhi, uint64_t numlo, uint64_t den, uint64_t *r) {
// N.B. resist the temptation to use __uint128_t here.
// In LLVM compiler-rt, it performs a 128/128 -> 128 division which is many times slower than
// necessary. In gcc it's better but still slower than the divlu implementation, perhaps because
// it's not LIBDIVIDE_INLINEd.
#if defined(LIBDIVIDE_X86_64) && defined(LIBDIVIDE_GCC_STYLE_ASM)
uint64_t result;
__asm__("divq %[v]" : "=a"(result), "=d"(*r) : [v] "r"(den), "a"(numlo), "d"(numhi));
return result;
#else
// We work in base 2**32.
// A uint32 holds a single digit. A uint64 holds two digits.
// Our numerator is conceptually [num3, num2, num1, num0].
// Our denominator is [den1, den0].
const uint64_t b = ((uint64_t)1 << 32);
// The high and low digits of our computed quotient.
uint32_t q1;
uint32_t q0;
// The normalization shift factor.
int shift;
// The high and low digits of our denominator (after normalizing).
// Also the low 2 digits of our numerator (after normalizing).
uint32_t den1;
uint32_t den0;
uint32_t num1;
uint32_t num0;
// A partial remainder.
uint64_t rem;
// The estimated quotient, and its corresponding remainder (unrelated to true remainder).
uint64_t qhat;
uint64_t rhat;
// Variables used to correct the estimated quotient.
uint64_t c1;
uint64_t c2;
// Check for overflow and divide by 0.
if (numhi >= den) {
if (r) *r = ~0ull;
return ~0ull;
}
// Determine the normalization factor. We multiply den by this, so that its leading digit is at
// least half b. In binary this means just shifting left by the number of leading zeros, so that
// there's a 1 in the MSB.
// We also shift numer by the same amount. This cannot overflow because numhi < den.
// The expression (-shift & 63) is the same as (64 - shift), except it avoids the UB of shifting
// by 64. The funny bitwise 'and' ensures that numlo does not get shifted into numhi if shift is
// 0. clang 11 has an x86 codegen bug here: see LLVM bug 50118. The sequence below avoids it.
shift = libdivide_count_leading_zeros64(den);
den <<= shift;
numhi <<= shift;
numhi |= (numlo >> (-shift & 63)) & (-(int64_t)shift >> 63);
numlo <<= shift;
// Extract the low digits of the numerator and both digits of the denominator.
num1 = (uint32_t)(numlo >> 32);
num0 = (uint32_t)(numlo & 0xFFFFFFFFu);
den1 = (uint32_t)(den >> 32);
den0 = (uint32_t)(den & 0xFFFFFFFFu);
// We wish to compute q1 = [n3 n2 n1] / [d1 d0].
// Estimate q1 as [n3 n2] / [d1], and then correct it.
// Note while qhat may be 2 digits, q1 is always 1 digit.
qhat = numhi / den1;
rhat = numhi % den1;
c1 = qhat * den0;
c2 = rhat * b + num1;
if (c1 > c2) qhat -= (c1 - c2 > den) ? 2 : 1;
q1 = (uint32_t)qhat;
// Compute the true (partial) remainder.
rem = numhi * b + num1 - q1 * den;
// We wish to compute q0 = [rem1 rem0 n0] / [d1 d0].
// Estimate q0 as [rem1 rem0] / [d1] and correct it.
qhat = rem / den1;
rhat = rem % den1;
c1 = qhat * den0;
c2 = rhat * b + num0;
if (c1 > c2) qhat -= (c1 - c2 > den) ? 2 : 1;
q0 = (uint32_t)qhat;
// Return remainder if requested.
if (r) *r = (rem * b + num0 - q0 * den) >> shift;
return ((uint64_t)q1 << 32) | q0;
#endif
}
#if !(defined(HAS_INT128_T) && \
defined(HAS_INT128_DIV))
// Bitshift a u128 in place, left (signed_shift > 0) or right (signed_shift < 0)
static LIBDIVIDE_INLINE void libdivide_u128_shift(
uint64_t *u1, uint64_t *u0, int32_t signed_shift) {
if (signed_shift > 0) {
uint32_t shift = signed_shift;
*u1 <<= shift;
*u1 |= *u0 >> (64 - shift);
*u0 <<= shift;
} else if (signed_shift < 0) {
uint32_t shift = -signed_shift;
*u0 >>= shift;
*u0 |= *u1 << (64 - shift);
*u1 >>= shift;
}
}
#endif
// Computes a 128 / 128 -> 64 bit division, with a 128 bit remainder.
static LIBDIVIDE_INLINE uint64_t libdivide_128_div_128_to_64(
uint64_t u_hi, uint64_t u_lo, uint64_t v_hi, uint64_t v_lo, uint64_t *r_hi, uint64_t *r_lo) {
#if defined(HAS_INT128_T) && defined(HAS_INT128_DIV)
__uint128_t ufull = u_hi;
__uint128_t vfull = v_hi;
ufull = (ufull << 64) | u_lo;
vfull = (vfull << 64) | v_lo;
uint64_t res = (uint64_t)(ufull / vfull);
__uint128_t remainder = ufull - (vfull * res);
*r_lo = (uint64_t)remainder;
*r_hi = (uint64_t)(remainder >> 64);
return res;
#else
// Adapted from "Unsigned Doubleword Division" in Hacker's Delight
// We want to compute u / v
typedef struct {
uint64_t hi;
uint64_t lo;
} u128_t;
u128_t u = {u_hi, u_lo};
u128_t v = {v_hi, v_lo};
if (v.hi == 0) {
// divisor v is a 64 bit value, so we just need one 128/64 division
// Note that we are simpler than Hacker's Delight here, because we know
// the quotient fits in 64 bits whereas Hacker's Delight demands a full
// 128 bit quotient
*r_hi = 0;
return libdivide_128_div_64_to_64(u.hi, u.lo, v.lo, r_lo);
}
// Here v >= 2**64
// We know that v.hi != 0, so count leading zeros is OK
// We have 0 <= n <= 63
uint32_t n = libdivide_count_leading_zeros64(v.hi);
// Normalize the divisor so its MSB is 1
u128_t v1t = v;
libdivide_u128_shift(&v1t.hi, &v1t.lo, n);
uint64_t v1 = v1t.hi; // i.e. v1 = v1t >> 64
// To ensure no overflow
u128_t u1 = u;
libdivide_u128_shift(&u1.hi, &u1.lo, -1);
// Get quotient from divide unsigned insn.
uint64_t rem_ignored;
uint64_t q1 = libdivide_128_div_64_to_64(u1.hi, u1.lo, v1, &rem_ignored);
// Undo normalization and division of u by 2.
u128_t q0 = {0, q1};
libdivide_u128_shift(&q0.hi, &q0.lo, n);
libdivide_u128_shift(&q0.hi, &q0.lo, -63);
// Make q0 correct or too small by 1
// Equivalent to `if (q0 != 0) q0 = q0 - 1;`
if (q0.hi != 0 || q0.lo != 0) {
q0.hi -= (q0.lo == 0); // borrow
q0.lo -= 1;
}
// Now q0 is correct.
// Compute q0 * v as q0v
// = (q0.hi << 64 + q0.lo) * (v.hi << 64 + v.lo)
// = (q0.hi * v.hi << 128) + (q0.hi * v.lo << 64) +
// (q0.lo * v.hi << 64) + q0.lo * v.lo)
// Each term is 128 bit
// High half of full product (upper 128 bits!) are dropped
u128_t q0v = {0, 0};
q0v.hi = q0.hi * v.lo + q0.lo * v.hi + libdivide_mullhi_u64(q0.lo, v.lo);
q0v.lo = q0.lo * v.lo;
// Compute u - q0v as u_q0v
// This is the remainder
u128_t u_q0v = u;
u_q0v.hi -= q0v.hi + (u.lo < q0v.lo); // second term is borrow
u_q0v.lo -= q0v.lo;
// Check if u_q0v >= v
// This checks if our remainder is larger than the divisor
if ((u_q0v.hi > v.hi) || (u_q0v.hi == v.hi && u_q0v.lo >= v.lo)) {
// Increment q0
q0.lo += 1;
q0.hi += (q0.lo == 0); // carry
// Subtract v from remainder
u_q0v.hi -= v.hi + (u_q0v.lo < v.lo);
u_q0v.lo -= v.lo;
}
*r_hi = u_q0v.hi;
*r_lo = u_q0v.lo;
LIBDIVIDE_ASSERT(q0.hi == 0);
return q0.lo;
#endif
}
////////// UINT16
static LIBDIVIDE_INLINE struct libdivide_u16_t libdivide_internal_u16_gen(
uint16_t d, int branchfree) {
if (d == 0) {
LIBDIVIDE_ERROR("divider must be != 0");
}
struct libdivide_u16_t result;
uint8_t floor_log_2_d = (uint8_t)(15 - libdivide_count_leading_zeros16(d));
// Power of 2
if ((d & (d - 1)) == 0) {
// We need to subtract 1 from the shift value in case of an unsigned
// branchfree divider because there is a hardcoded right shift by 1
// in its division algorithm. Because of this we also need to add back
// 1 in its recovery algorithm.
result.magic = 0;
result.more = (uint8_t)(floor_log_2_d - (branchfree != 0));
} else {
uint8_t more;
uint16_t rem, proposed_m;
proposed_m = libdivide_32_div_16_to_16((uint16_t)1 << floor_log_2_d, 0, d, &rem);
LIBDIVIDE_ASSERT(rem > 0 && rem < d);
const uint16_t e = d - rem;
// This power works if e < 2**floor_log_2_d.
if (!branchfree && (e < ((uint16_t)1 << floor_log_2_d))) {
// This power works
more = floor_log_2_d;
} else {
// We have to use the general 17-bit algorithm. We need to compute
// (2**power) / d. However, we already have (2**(power-1))/d and
// its remainder. By doubling both, and then correcting the
// remainder, we can compute the larger division.
// don't care about overflow here - in fact, we expect it
proposed_m += proposed_m;
const uint16_t twice_rem = rem + rem;
if (twice_rem >= d || twice_rem < rem) proposed_m += 1;
more = floor_log_2_d | LIBDIVIDE_ADD_MARKER;
}
result.magic = 1 + proposed_m;
result.more = more;
// result.more's shift should in general be ceil_log_2_d. But if we
// used the smaller power, we subtract one from the shift because we're
// using the smaller power. If we're using the larger power, we
// subtract one from the shift because it's taken care of by the add
// indicator. So floor_log_2_d happens to be correct in both cases.
}
return result;
}
struct libdivide_u16_t libdivide_u16_gen(uint16_t d) {
return libdivide_internal_u16_gen(d, 0);
}
struct libdivide_u16_branchfree_t libdivide_u16_branchfree_gen(uint16_t d) {
if (d == 1) {
LIBDIVIDE_ERROR("branchfree divider must be != 1");
}
struct libdivide_u16_t tmp = libdivide_internal_u16_gen(d, 1);
struct libdivide_u16_branchfree_t ret = {
tmp.magic, (uint8_t)(tmp.more & LIBDIVIDE_16_SHIFT_MASK)};
return ret;
}
// The original libdivide_u16_do takes a const pointer. However, this cannot be used
// with a compile time constant libdivide_u16_t: it will generate a warning about
// taking the address of a temporary. Hence this overload.
uint16_t libdivide_u16_do_raw(uint16_t numer, uint16_t magic, uint8_t more) {
if (!magic) {
return numer >> more;
} else {
uint16_t q = libdivide_mullhi_u16(magic, numer);
if (more & LIBDIVIDE_ADD_MARKER) {
uint16_t t = ((numer - q) >> 1) + q;
return t >> (more & LIBDIVIDE_16_SHIFT_MASK);
} else {
// All upper bits are 0,
// don't need to mask them off.
return q >> more;
}
}
}
uint16_t libdivide_u16_do(uint16_t numer, const struct libdivide_u16_t *denom) {
return libdivide_u16_do_raw(numer, denom->magic, denom->more);
}
uint16_t libdivide_u16_branchfree_do(
uint16_t numer, const struct libdivide_u16_branchfree_t *denom) {
uint16_t q = libdivide_mullhi_u16(denom->magic, numer);
uint16_t t = ((numer - q) >> 1) + q;
return t >> denom->more;
}
uint16_t libdivide_u16_recover(const struct libdivide_u16_t *denom) {
uint8_t more = denom->more;
uint8_t shift = more & LIBDIVIDE_16_SHIFT_MASK;
if (!denom->magic) {
return (uint16_t)1 << shift;
} else if (!(more & LIBDIVIDE_ADD_MARKER)) {
// We compute q = n/d = n*m / 2^(16 + shift)
// Therefore we have d = 2^(16 + shift) / m
// We need to ceil it.
// We know d is not a power of 2, so m is not a power of 2,
// so we can just add 1 to the floor
uint16_t hi_dividend = (uint16_t)1 << shift;
uint16_t rem_ignored;
return 1 + libdivide_32_div_16_to_16(hi_dividend, 0, denom->magic, &rem_ignored);
} else {
// Here we wish to compute d = 2^(16+shift+1)/(m+2^16).
// Notice (m + 2^16) is a 17 bit number. Use 32 bit division for now
// Also note that shift may be as high as 15, so shift + 1 will
// overflow. So we have to compute it as 2^(16+shift)/(m+2^16), and
// then double the quotient and remainder.
uint32_t half_n = (uint32_t)1 << (16 + shift);
uint32_t d = ((uint32_t)1 << 16) | denom->magic;
// Note that the quotient is guaranteed <= 16 bits, but the remainder
// may need 17!
uint16_t half_q = (uint16_t)(half_n / d);
uint32_t rem = half_n % d;
// We computed 2^(16+shift)/(m+2^16)
// Need to double it, and then add 1 to the quotient if doubling th
// remainder would increase the quotient.
// Note that rem<<1 cannot overflow, since rem < d and d is 17 bits
uint16_t full_q = half_q + half_q + ((rem << 1) >= d);
// We rounded down in gen (hence +1)
return full_q + 1;
}
}
uint16_t libdivide_u16_branchfree_recover(const struct libdivide_u16_branchfree_t *denom) {
uint8_t more = denom->more;
uint8_t shift = more & LIBDIVIDE_16_SHIFT_MASK;
if (!denom->magic) {
return (uint16_t)1 << (shift + 1);
} else {
// Here we wish to compute d = 2^(16+shift+1)/(m+2^16).
// Notice (m + 2^16) is a 17 bit number. Use 32 bit division for now
// Also note that shift may be as high as 15, so shift + 1 will
// overflow. So we have to compute it as 2^(16+shift)/(m+2^16), and
// then double the quotient and remainder.
uint32_t half_n = (uint32_t)1 << (16 + shift);
uint32_t d = ((uint32_t)1 << 16) | denom->magic;
// Note that the quotient is guaranteed <= 16 bits, but the remainder
// may need 17!
uint16_t half_q = (uint16_t)(half_n / d);
uint32_t rem = half_n % d;
// We computed 2^(16+shift)/(m+2^16)
// Need to double it, and then add 1 to the quotient if doubling th
// remainder would increase the quotient.
// Note that rem<<1 cannot overflow, since rem < d and d is 33 bits
uint16_t full_q = half_q + half_q + ((rem << 1) >= d);
// We rounded down in gen (hence +1)
return full_q + 1;
}
}
////////// UINT32
static LIBDIVIDE_INLINE struct libdivide_u32_t libdivide_internal_u32_gen(
uint32_t d, int branchfree) {
if (d == 0) {
LIBDIVIDE_ERROR("divider must be != 0");
}
struct libdivide_u32_t result;
uint32_t floor_log_2_d = 31 - libdivide_count_leading_zeros32(d);
// Power of 2
if ((d & (d - 1)) == 0) {
// We need to subtract 1 from the shift value in case of an unsigned
// branchfree divider because there is a hardcoded right shift by 1
// in its division algorithm. Because of this we also need to add back
// 1 in its recovery algorithm.
result.magic = 0;
result.more = (uint8_t)(floor_log_2_d - (branchfree != 0));
} else {
uint8_t more;
uint32_t rem, proposed_m;
proposed_m = libdivide_64_div_32_to_32((uint32_t)1 << floor_log_2_d, 0, d, &rem);
LIBDIVIDE_ASSERT(rem > 0 && rem < d);
const uint32_t e = d - rem;
// This power works if e < 2**floor_log_2_d.
if (!branchfree && (e < ((uint32_t)1 << floor_log_2_d))) {
// This power works
more = (uint8_t)floor_log_2_d;
} else {
// We have to use the general 33-bit algorithm. We need to compute
// (2**power) / d. However, we already have (2**(power-1))/d and
// its remainder. By doubling both, and then correcting the
// remainder, we can compute the larger division.
// don't care about overflow here - in fact, we expect it
proposed_m += proposed_m;
const uint32_t twice_rem = rem + rem;
if (twice_rem >= d || twice_rem < rem) proposed_m += 1;
more = (uint8_t)(floor_log_2_d | LIBDIVIDE_ADD_MARKER);
}
result.magic = 1 + proposed_m;
result.more = more;
// result.more's shift should in general be ceil_log_2_d. But if we
// used the smaller power, we subtract one from the shift because we're
// using the smaller power. If we're using the larger power, we
// subtract one from the shift because it's taken care of by the add
// indicator. So floor_log_2_d happens to be correct in both cases.
}
return result;
}
struct libdivide_u32_t libdivide_u32_gen(uint32_t d) {
return libdivide_internal_u32_gen(d, 0);
}
struct libdivide_u32_branchfree_t libdivide_u32_branchfree_gen(uint32_t d) {
if (d == 1) {
LIBDIVIDE_ERROR("branchfree divider must be != 1");
}
struct libdivide_u32_t tmp = libdivide_internal_u32_gen(d, 1);
struct libdivide_u32_branchfree_t ret = {
tmp.magic, (uint8_t)(tmp.more & LIBDIVIDE_32_SHIFT_MASK)};
return ret;
}
uint32_t libdivide_u32_do_raw(uint32_t numer, uint32_t magic, uint8_t more) {
if (!magic) {
return numer >> more;
} else {
uint32_t q = libdivide_mullhi_u32(magic, numer);
if (more & LIBDIVIDE_ADD_MARKER) {
uint32_t t = ((numer - q) >> 1) + q;
return t >> (more & LIBDIVIDE_32_SHIFT_MASK);
} else {
// All upper bits are 0,
// don't need to mask them off.
return q >> more;
}
}
}
uint32_t libdivide_u32_do(uint32_t numer, const struct libdivide_u32_t *denom) {
return libdivide_u32_do_raw(numer, denom->magic, denom->more);
}
uint32_t libdivide_u32_branchfree_do(
uint32_t numer, const struct libdivide_u32_branchfree_t *denom) {
uint32_t q = libdivide_mullhi_u32(denom->magic, numer);
uint32_t t = ((numer - q) >> 1) + q;
return t >> denom->more;
}
uint32_t libdivide_u32_recover(const struct libdivide_u32_t *denom) {
uint8_t more = denom->more;
uint8_t shift = more & LIBDIVIDE_32_SHIFT_MASK;
if (!denom->magic) {
return (uint32_t)1 << shift;
} else if (!(more & LIBDIVIDE_ADD_MARKER)) {
// We compute q = n/d = n*m / 2^(32 + shift)
// Therefore we have d = 2^(32 + shift) / m
// We need to ceil it.
// We know d is not a power of 2, so m is not a power of 2,
// so we can just add 1 to the floor
uint32_t hi_dividend = (uint32_t)1 << shift;
uint32_t rem_ignored;
return 1 + libdivide_64_div_32_to_32(hi_dividend, 0, denom->magic, &rem_ignored);
} else {
// Here we wish to compute d = 2^(32+shift+1)/(m+2^32).
// Notice (m + 2^32) is a 33 bit number. Use 64 bit division for now
// Also note that shift may be as high as 31, so shift + 1 will
// overflow. So we have to compute it as 2^(32+shift)/(m+2^32), and
// then double the quotient and remainder.
uint64_t half_n = (uint64_t)1 << (32 + shift);
uint64_t d = ((uint64_t)1 << 32) | denom->magic;
// Note that the quotient is guaranteed <= 32 bits, but the remainder
// may need 33!
uint32_t half_q = (uint32_t)(half_n / d);
uint64_t rem = half_n % d;
// We computed 2^(32+shift)/(m+2^32)
// Need to double it, and then add 1 to the quotient if doubling th
// remainder would increase the quotient.
// Note that rem<<1 cannot overflow, since rem < d and d is 33 bits
uint32_t full_q = half_q + half_q + ((rem << 1) >= d);
// We rounded down in gen (hence +1)
return full_q + 1;
}
}