-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathengine.py
460 lines (374 loc) · 15.3 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
from copy import deepcopy
from typing import List, Tuple, Optional
import random
import time
from chess_board import ChessBoard, Position
from pieces.chess_piece import ChessPiece, PlayerColor
from util import string_to_position, position_to_string
def minimax(
board_state: ChessBoard,
depth: int,
player_color: PlayerColor,
alpha: float = -float("inf"),
beta: float = float("inf"),
cache: Optional[
dict[str, tuple[Optional[ChessPiece], Optional[Position], int]]
] = None,
start_time: time = None,
time_limit: time = None,
lmr_move_count: int = 100,
) -> Tuple[Optional[ChessPiece], Optional[Position], int]:
"""
Minimax algorithm with alpha-beta pruning for the chess AI
Args:
board_state (ChessBoard): Current state of the chess board.
depth (int): Depth of the search tree.
player_color (PlayerColor): Color of the current player.
alpha (float, optional): Alpha value for alpha-beta pruning. Defaults to -float('inf').
beta (float, optional): Beta value for alpha-beta pruning. Defaults to float('inf').
cache (Optional[dict[str, tuple[Optional[ChessPiece], Optional[Position], int]]], optional): A dictionary to store previously computed board evaluations. Defaults to None.
lmr_move_count (int): how many moves to do full depth search, rest do shallower search
Returns:
Tuple[Optional[ChessPiece], Optional[Position], int, bool]: Best piece, best move, score of the best move, terminated due to time.
"""
if cache is None:
cache = {}
board_key = hash(board_state)
if board_key in cache and depth == cache[board_key][2]:
# print(f'board key {board_key}')
# print(cache[board_key])
return cache[board_key]
elapsed_time = time.time() - start_time
terminate = (
start_time is not None and time_limit is not None and elapsed_time >= time_limit
)
opponent_color = (
PlayerColor.WHITE if player_color == PlayerColor.BLACK else PlayerColor.BLACK
)
maximizing_player = (
player_color == PlayerColor.WHITE
) # white is always maximizing, black minimizing
# base case: depth is 0 or game over
if (
depth == 0
or board_state.is_checkmate(player_color)
or board_state.is_stalemate(player_color)
or terminate
):
terminated_score = None
evaluated_score = (
board_state.evaluation_function() if depth == 0 else terminated_score
)
return None, None, evaluated_score, terminate
best_move = None
best_piece = None
if maximizing_player:
max_score = -float("inf")
# Get all possible moves and their scores
possible_moves = [
(piece, move)
for piece, moves in board_state.get_possible_moves(player_color)
for move in moves
]
# Sort the moves based on their scores
possible_moves.sort(
key=lambda move: move_score(move, board_state), reverse=True
) # descending order
terminated = False
# Iterate over the ordered moves
for move_num, (piece, move) in enumerate(possible_moves):
# create a new board and move the piece
new_board = deepcopy(board_state)
new_piece = deepcopy(piece)
new_board.move_piece(new_piece, move)
# Late Move Reductions
reduction = 1 if move_num <= lmr_move_count else 2
minimax_piece, minimax_move, minimax_score, terminated_lmr = minimax(
board_state=new_board,
depth=depth - reduction,
player_color=opponent_color,
alpha=alpha,
beta=beta,
cache=cache,
start_time=start_time,
time_limit=time_limit,
)
if minimax_score is not None and reduction == 2 and minimax_score > alpha:
minimax_piece, minimax_move, minimax_score, terminated_deep = minimax(
board_state=new_board,
depth=depth - 1,
player_color=opponent_color,
alpha=alpha,
beta=beta,
cache=cache,
start_time=start_time,
time_limit=time_limit,
)
# update best move if a better score is found
if minimax_score is not None and minimax_score > max_score:
max_score = minimax_score
best_move = move
best_piece = piece
terminated = terminated_lmr
# Update alpha and prune if beta <= alpha only after the full depth search
alpha = max(alpha, max_score)
if beta <= alpha:
break
max_score = None if max_score == -float("inf") else max_score
cache[board_key] = best_piece, best_move, max_score
return best_piece, best_move, max_score, terminated
else:
min_score = float("inf")
# Get all possible moves and their scores
possible_moves = [
(piece, move)
for piece, moves in board_state.get_possible_moves(player_color)
for move in moves
]
# Sort the moves based on their scores
possible_moves.sort(
key=lambda move: move_score(move, board_state), reverse=False
) # ascending order
terminated = False
for move_num, (piece, move) in enumerate(possible_moves):
# create a new board and move the piece
new_board = deepcopy(board_state)
new_piece = deepcopy(piece)
new_board.move_piece(new_piece, move)
# Late Move Reductions
reduction = 1 if move_num <= lmr_move_count else 2
minimax_piece, minimax_move, minimax_score, terminated_lmr = minimax(
board_state=new_board,
depth=depth - reduction,
player_color=opponent_color,
alpha=alpha,
beta=beta,
cache=cache,
start_time=start_time,
time_limit=time_limit,
)
if minimax_score is not None and reduction == 2 and minimax_score < beta:
minimax_piece, minimax_move, minimax_score, terminated_deep = minimax(
board_state=new_board,
depth=depth - 1,
player_color=opponent_color,
alpha=alpha,
beta=beta,
cache=cache,
start_time=start_time,
time_limit=time_limit,
)
# update best move if a lower score is found
if minimax_score is not None and minimax_score < min_score:
min_score = minimax_score
best_move = move
best_piece = piece
terminated = terminated_lmr
# update beta and prune if beta <= alpha
beta = min(beta, min_score)
if beta <= alpha:
break
min_score = None if min_score == float("inf") else min_score
cache[board_key] = best_piece, best_move, min_score
return best_piece, best_move, min_score, terminated
def iterative_deepening_minimax(
board_state: ChessBoard,
max_depth: int,
player_color: PlayerColor,
time_limit: int,
) -> Tuple[Optional[ChessPiece], Optional[Position], int]:
start_time = time.time()
maximizing_player = player_color == PlayerColor.WHITE
depth_move_scores = []
for current_depth in range(1, max_depth + 1):
print(f"Depth: {current_depth}")
piece, move, score, terminated = minimax(
board_state=board_state,
depth=current_depth,
player_color=player_color,
start_time=start_time,
time_limit=time_limit,
)
if not terminated:
print(f"Best move at depth: {current_depth}: {piece}, {move}, {score}")
depth_move_scores.append((piece, move, score))
else:
print(f"Search at depth = {current_depth} was terminated")
best_score = depth_move_scores[-1][2]
terminated_search_best_score = score
if (
maximizing_player
and terminated_search_best_score is not None
and terminated_search_best_score > best_score
):
print(
f"Explored move is better than best move at previous depth... {piece}, {move}, {score}"
)
depth_move_scores.append((piece, move, score))
elif (
not maximizing_player
and terminated_search_best_score is not None
and terminated_search_best_score < best_score
):
print(
f"Explored move is better than best move at previous depth... {piece}, {move}, {score}"
)
depth_move_scores.append((piece, move, score))
# check if time limit has been reached and break if so
elapsed_time = time.time() - start_time
if elapsed_time >= time_limit:
print(f"Depth: {current_depth} - Time Limit Reached")
break
return depth_move_scores[-1]
def get_random_move(
board_state: ChessBoard, color: PlayerColor
) -> Tuple[ChessPiece, Position]:
possible_moves = []
for piece, moves in board_state.get_possible_moves(color):
for move in moves:
possible_moves.append((piece, move))
if not possible_moves:
return None, None
return random.choice(possible_moves)
sicilian_defense = [("Pawn", "C7", "C5"), ("Pawn", "D7", "D6")]
carokann_defense = [("Pawn", "C7", "C6"), ("Pawn", "D7", "D5")]
slav_defense = [("Pawn", "D7", "D5"), ("Pawn", "C7", "C6")]
book_moves_black = {
("Pawn", "E2", "E4"): {"sicilian": sicilian_defense, "caro-kann": carokann_defense},
("Pawn", "D2", "D4"): {
"slav": slav_defense,
},
}
def get_book_move_black(board_state: ChessBoard) -> Tuple[str, Position, Position]:
moves = board_state.get_moves()
turn = len(moves) // 2
if len(moves) == 0 or turn > 1:
return None, None, None
white_opening = moves[0]
# if white starts with a popular opening, choose the appropriate defense
if white_opening in book_moves_black:
random_book_opening = random.choice(book_moves_black[white_opening])
move = book_moves_black[white_opening][random_book_opening][turn]
# arbitrarily pick the caro kann defense
else:
move = carokann_defense[turn]
piece_str, src_str, dest_str = move
return piece_str, string_to_position(src_str), string_to_position(dest_str)
def move_score(move: Tuple[ChessPiece, Position], board_state: ChessBoard) -> int:
piece, target_position = move
target_piece = board_state.get_piece(target_position)
score = 0
see_score = 0
# capture moves given priority based on relative value
if target_piece is not None and target_piece.color != piece.color:
# what should multiplier be?
see_score = (
static_exchange_evaluation(board_state, (piece, target_position)) * 100
)
score += see_score
# print(score)
# score += (target_piece.value - piece.value) * 50
new_board = deepcopy(board_state)
new_piece = deepcopy(piece)
new_board.move_piece(new_piece, target_position)
# check moves also given priority
opponent_color = (
PlayerColor.WHITE if piece.color == PlayerColor.BLACK else PlayerColor.BLACK
)
if new_board.is_king_in_check(opponent_color):
score += 50
# center control bonus
central_squares = [(3, 3), (3, 4), (4, 3), (4, 4)]
if target_position in central_squares:
score += 10
# moved piece mobility is rewarded
mobility = len(new_piece.get_possible_moves(new_board))
score += mobility
# if piece.color == PlayerColor.BLACK:
# score = -score
# score += new_board.evaluation_function()
return score
def get_best_move(
board_state: ChessBoard,
color: PlayerColor,
max_depth: int = None,
max_time: int = None,
) -> Tuple[ChessPiece, Position]:
time_limit = max_time # time limit in seconds
max_depth = max_depth
if color == PlayerColor.BLACK:
book_move = get_book_move_black(board_state)
piece_str, start_pos, end_pos = book_move
if piece_str is not None:
piece = board_state.get_piece(start_pos)
return piece, end_pos
piece, move, _ = iterative_deepening_minimax(
board_state=board_state,
max_depth=max_depth,
player_color=color,
time_limit=time_limit,
)
# piece, move, _ = minimax(board_state, depth, True, color)
# piece, move = get_random_move(board_state, color)
return piece, move
def static_exchange_evaluation(
board_state: ChessBoard, move: Tuple[ChessPiece, Position]
) -> int:
"""
This function performs Static Exchange Evaluation (SEE) on a given move.
Args:
board_state (ChessBoard): The current state of the chess board.
move (Tuple[ChessPiece, Position]): The move to be evaluated.
Returns:
int: The SEE score for the given move.
"""
piece, target_position = move
attacker_color = piece.color
opponent_color = (
PlayerColor.WHITE if attacker_color == PlayerColor.BLACK else PlayerColor.BLACK
)
# Get the target piece, and return 0 if there is no target piece
target_piece = board_state.get_piece(target_position)
if target_piece is None or target_piece.color == attacker_color:
return 0
# Initialize the attackers and the gains array
attackers = {color: [] for color in [attacker_color, opponent_color]}
gains = [0] * 32
gains[0] = target_piece.value
# Find all attacking pieces for both sides
for row in range(8):
for col in range(8):
attacking_piece = board_state.get_piece((row, col))
if attacking_piece is not None and attacking_piece.color in [
attacker_color,
opponent_color,
]:
if target_position in attacking_piece.get_possible_moves(board_state):
attackers[attacking_piece.color].append(
(attacking_piece, attacking_piece.value)
)
# Sort the attackers by the piece values
for color in [attacker_color, opponent_color]:
attackers[color].sort(key=lambda x: x[1])
current_attacker_color = attacker_color
current_depth = 1
while True:
# If no attackers are left for the current side, break the loop
if not attackers[current_attacker_color]:
break
# Get the next attacker
next_attacker, next_attacker_value = attackers[current_attacker_color].pop(0)
# Add the captured value to the gains array
gains[current_depth] = -gains[current_depth - 1] + next_attacker_value
# Switch to the other side
current_attacker_color = (
opponent_color
if current_attacker_color == attacker_color
else attacker_color
)
current_depth += 1
# Compute the SEE score
while current_depth > 1:
current_depth -= 1
gains[current_depth - 1] = min(gains[current_depth - 1], -gains[current_depth])
return gains[0]