-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathConkin.hs
820 lines (689 loc) · 33.7 KB
/
Conkin.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
{-# OPTIONS_GHC -Wno-name-shadowing #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ExplicitNamespaces #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE ViewPatterns #-}
-- |
-- The 'Conkin' module defines tools for types of kind @(k -> *) -> *@
-- (__con__tinuation __kin__d types), treating them as functors from the category of
-- types of kind @k -> *@ (/Hask^k/) to the category of types of kind @*@ (/Hask/).
--
-- It defines its own 'Functor', 'Applicative', 'Foldable', and 'Traversable'
-- classes, as continuation kind types are kind-incompatible with the
-- homonymous classes in "Prelude".
--
-- The 'Dispose' type lifts a traditional functor to a continuation kind
-- functor:
--
-- >>> :k Dispose Maybe 0
-- Dispose Maybe 0 :: (Nat -> *) -> *
--
-- While the 'Coyoneda' type does the opposite.
--
-- >>> data OfSymbol a = OfSymbol (a "hello")
-- >>> :k OfSymbol
-- OfSymbol :: (Symbol -> *) -> *
-- >>> :k Coyoneda OfSymbol
-- Coyoneda OfSymbol :: * -> *
--
-- Two of the most useful functions provided by the module are 'align' and
-- 'apportion', as they allow you to transpose the composition of a traditional
-- endofunctor and a continuation kind functor.
--
-- >>> rows = zipWith (\ch ix -> Pair (Identity ch, Identity ix)) "abc" [0..2]
-- >>> rows
-- [ Pair { getPair = ( Identity 'a' , Identity 0 ) }
-- , Pair { getPair = ( Identity 'b' , Identity 1 ) }
-- , Pair { getPair = ( Identity 'c' , Identity 2 ) }
-- ]
-- >>> cols = align rows
-- >>> cols
-- Pair { getPair = ( "abc" , [ 0 , 1 , 2 ] ) }
-- >>> apportion cols
-- [ Pair { getPair = ( Identity 'a' , Identity 0 ) }
-- , Pair { getPair = ( Identity 'a' , Identity 1 ) }
-- , Pair { getPair = ( Identity 'a' , Identity 2 ) }
-- , Pair { getPair = ( Identity 'b' , Identity 0 ) }
-- , Pair { getPair = ( Identity 'b' , Identity 1 ) }
-- , Pair { getPair = ( Identity 'b' , Identity 2 ) }
-- , Pair { getPair = ( Identity 'c' , Identity 0 ) }
-- , Pair { getPair = ( Identity 'c' , Identity 1 ) }
-- , Pair { getPair = ( Identity 'c' , Identity 2 ) }
-- ]
-- >>> apportion $ fmap ZipList cols
-- ZipList
-- { getZipList =
-- [ Pair { getPair = ( Identity 'a' , Identity 0 ) }
-- , Pair { getPair = ( Identity 'b' , Identity 1 ) }
-- , Pair { getPair = ( Identity 'c' , Identity 2 ) }
-- ]
-- }
--
-- There's also convenience types for 'Product's and 'Coproduct's of
-- continuation kind functors, as well as for 'Tuple's and 'Tagged' unions
-- of arbitrary types.
module Conkin
{- classes -}
( Functor(..), (<$>)
, Applicative(..), type (~>)(..), liftA2, liftA3, liftA4
, Foldable(..)
, Traversable(..), traverse', sequenceA', liftT1, liftT2, liftT3, liftT4, align, apportion
{- wrappers -}
, Dispose(..)
, Coyoneda(..), getCoyoneda, toCoyoneda
{- functors -}
, Product(..), toProduct, fromProduct
, Coproduct(..)
, Pair(..)
, Tuple(..)
, Tagged(..)
{- utility types -}
, Flip(..)
, Curry(..)
, Uncurry(..), pattern UncurryStrict, getUncurryStrict, uncurried
, Pure(..)
--, Exists(..)
--, Both(..)
--, Curry2(..)
--, Compose2(..)
) where
import Prelude hiding (Functor(..), (<$>), Applicative(..), Traversable(..), Foldable(..) )
import qualified Prelude
import qualified Control.Applicative as Prelude
import Data.Functor.Compose (Compose(..))
import Data.Functor.Const (Const(..))
import Data.Monoid (Endo(..), (<>))
import Unsafe.Coerce (unsafeCoerce)
import Data.Functor.Identity (Identity(..))
-- $setup
-- >>> :set -XDataKinds -XGADTs
-- >>> :m +GHC.TypeLits
-- >>> import Text.Show.Pretty (pPrint)
-- >>> :set -interactive-print pPrint
-- >>> import Control.Applicative (ZipList(..))
{- Classes ----------------------------------------------------------------------}
-- | A functor from /Hask^k/ to /Hask/, an analogue of 'Prelude.Functor' for kind @(k -> *) -> *@
class Functor (f :: (k -> *) -> *) where
fmap :: (forall (x :: k). a x -> b x) -> f a -> f b
-- | An analogue of 'Prelude.<$>' for use with "Conkin"'s 'Functor'
(<$>) :: Functor f => (forall x. a x -> b x) -> f a -> f b
(<$>) = fmap
infixl 4 <$>
-- | An analogue of 'Prelude.Applicative' for kind @(k -> *) -> *@
class Functor f => Applicative (f :: (k -> *) -> *) where
pure :: (forall (x :: k). a x) -> f a
(<*>) :: f (a ~> b) -> f a -> f b
infixl 4 <*>
-- | arrows in /Hask^k/ have type @a ~> b :: k -> *@
newtype (~>) (a :: k -> *) (b :: k -> *) (x :: k) =
Arrow { (~$~) :: a x -> b x }
infixr 0 ~>
infixr 0 ~$~
-- XXX: (Prelude.Contravariant a, Prelude.Functor b) => Prelude.Functor (a ~> b)
-- | An analogue of 'Prelude.liftA2' for use with "Conkin"'s 'Applicative'
liftA2 :: Applicative f => (forall x. a x -> b x -> c x) -> f a -> f b -> f c
liftA2 f a b = (Arrow . f) <$> a <*> b
-- | An analogue of 'Prelude.liftA3' for use with "Conkin"'s 'Applicative'
liftA3 :: Applicative f => (forall x. a x -> b x -> c x -> d x) -> f a -> f b -> f c -> f d
liftA3 f a b c = Arrow . (Arrow .) . f <$> a <*> b <*> c
-- | An extension of 'liftA3' to functions of four arguments
liftA4 :: Applicative f => (forall x. a x -> b x -> c x -> d x -> e x) -> f a -> f b -> f c -> f d -> f e
liftA4 f a b c d = Arrow . (Arrow .) . ((Arrow.).) . f <$> a <*> b <*> c <*> d
-- | An analogue of 'Prelude.Foldable' for kind @(k -> *) -> *@
class Foldable (t :: (k -> *) -> *) where
foldr :: (forall (x :: k). a x -> b -> b ) -> b -> t a -> b
foldr f b ta = foldMap (Endo . f) ta `appEndo` b
foldMap :: Monoid m => (forall (x :: k). a x -> m) -> t a -> m
foldMap f = foldr (\ax b -> f ax <> b) mempty
{-# MINIMAL foldr | foldMap #-}
-- | An analogue of 'Prelude.Traversable' for kind @(k -> *) -> *@
class (Foldable t, Functor t) => Traversable (t :: (i -> *) -> *) where
traverse :: forall (f :: (j -> *) -> *) (a :: i -> *) (b :: i -> j -> *).
Applicative f => (forall x. a x -> f (b x)) -> t a -> f (Compose t (Flip b))
traverse f = sequenceA . fmap (Compose . f)
sequenceA :: forall (f :: (j -> *) -> *) (a :: i -> j -> *).
Applicative f => t (Compose f a) -> f (Compose t (Flip a))
sequenceA = traverse getCompose
{-# MINIMAL traverse | sequenceA #-}
-- | version of 'traverse' that unflips the inner type
traverse' :: (Traversable t, Applicative f) => (forall x. a x -> f (Flip b x)) -> t a -> f (Compose t b)
traverse' f = fmap (Compose . fmap (getFlip . getFlip) . getCompose) . traverse f
-- | version of 'sequenceA' that unflips the inner type
sequenceA' :: (Traversable t, Applicative f) => t (Compose f (Flip a)) -> f (Compose t a)
sequenceA' = fmap (Compose . fmap (getFlip . getFlip) . getCompose) . sequenceA
-- | 'sequenceA' helper for single-parameter constructors
--
-- >>> :{
-- data OfOne a = OfOne (a Int)
-- instance Functor OfOne where
-- fmap h (OfOne a) = OfOne (h a)
-- instance Applicative OfOne where
-- pure = OfOne
-- OfOne f <*> OfOne a = OfOne (f ~$~ a)
-- instance Foldable OfOne where
-- foldMap h (OfOne a) = h a
-- instance Traversable OfOne where
-- sequenceA (OfOne fa) = liftT1 OfOne fa
-- :}
liftT1 :: Applicative g =>
(forall h. h w -> f h) -> Compose g a w -> g (Compose f (Flip a))
liftT1 c = fmap (Compose . c . Flip) . getCompose
-- | 'sequenceA' helper for two-parameter constructors
--
-- >>> :{
-- data OfTwo a = OfTwo (a Int) (a Char)
-- instance Functor OfTwo where
-- fmap h (OfTwo ai ac) = OfTwo (h ai) (h ac)
-- instance Applicative OfTwo where
-- pure a = OfTwo a a
-- OfTwo fi fc <*> OfTwo ai ac = OfTwo (fi ~$~ ai) (fc ~$~ ac)
-- instance Foldable OfTwo where
-- foldMap h (OfTwo ai ac) = h ai <> h ac
-- instance Traversable OfTwo where
-- sequenceA (OfTwo fai fac) = liftT2 OfTwo fai fac
-- :}
liftT2 :: Applicative g =>
(forall h. h w -> h x -> f h) -> Compose g a w -> Compose g a x -> g (Compose f (Flip a))
liftT2 c (Compose gaw) (Compose gax) =
liftA2 (\awt axt -> Compose $ c (Flip awt) (Flip axt)) gaw gax
-- | 'sequenceA' helper for three-parameter constructors
--
-- >>> :{
-- data OfThree a = OfThree (a Int) (a Char) (a Bool)
-- instance Functor OfThree where
-- fmap h (OfThree ai ac ab) = OfThree (h ai) (h ac) (h ab)
-- instance Applicative OfThree where
-- pure a = OfThree a a a
-- OfThree fi fc fb <*> OfThree ai ac ab = OfThree (fi ~$~ ai) (fc ~$~ ac) (fb ~$~ ab)
-- instance Foldable OfThree where
-- foldMap h (OfThree ai ac ab) = h ai <> h ac <> h ab
-- instance Traversable OfThree where
-- sequenceA (OfThree fai fac fab) = liftT3 OfThree fai fac fab
-- :}
liftT3 :: Applicative g =>
(forall h. h w -> h x -> h y -> f h) -> Compose g a w -> Compose g a x -> Compose g a y -> g (Compose f (Flip a))
liftT3 c (Compose gaw) (Compose gax) (Compose gay) =
liftA3 (\awt axt ayt -> Compose $ c (Flip awt) (Flip axt) (Flip ayt)) gaw gax gay
-- | 'sequenceA' helper for four-parameter constructors
--
-- >>> :{
-- data OfFour a = OfFour (a Int) (a Char) (a Bool) (a Double)
-- instance Functor OfFour where
-- fmap h (OfFour ai ac ab ad) = OfFour (h ai) (h ac) (h ab) (h ad)
-- instance Applicative OfFour where
-- pure a = OfFour a a a a
-- OfFour fi fc fb fd <*> OfFour ai ac ab ad = OfFour (fi ~$~ ai) (fc ~$~ ac) (fb ~$~ ab) (fd ~$~ ad)
-- instance Foldable OfFour where
-- foldMap h (OfFour ai ac ab ad) = h ai <> h ac <> h ab <> h ad
-- instance Traversable OfFour where
-- sequenceA (OfFour fai fac fab fad) = liftT4 OfFour fai fac fab fad
-- :}
liftT4 :: Applicative g =>
(forall h. h w -> h x -> h y -> h z -> f h) -> Compose g a w -> Compose g a x -> Compose g a y -> Compose g a z -> g (Compose f (Flip a))
liftT4 c (Compose gaw) (Compose gax) (Compose gay) (Compose gaz) =
liftA4 (\awt axt ayt azt -> Compose $ c (Flip awt) (Flip axt) (Flip ayt) (Flip azt)) gaw gax gay gaz
-- | Loosely, 'align' transforms an array of structures into a structure
-- of arrays, if by \"array\" one means an arbitrary collection type.
--
-- >>> rows = zipWith (\ch ix -> Pair (Identity ch, Identity ix)) "abc" [0..2]
-- >>> rows
-- [ Pair { getPair = ( Identity 'a' , Identity 0 ) }
-- , Pair { getPair = ( Identity 'b' , Identity 1 ) }
-- , Pair { getPair = ( Identity 'c' , Identity 2 ) }
-- ]
-- >>> align rows
-- Pair { getPair = ( "abc" , [ 0 , 1 , 2 ] ) }
align :: (Prelude.Traversable f, Applicative g) => f (g Identity) -> g f
align = fmap teardown . sequenceA . Dispose . Prelude.fmap setup where
setup :: Functor g => g Identity -> Compose g (Flip Const) void
setup = Compose . fmap (Flip . Const . runIdentity)
teardown :: Prelude.Functor f => Compose (Dispose f void) (Flip (Flip Const)) x -> f x
teardown = Prelude.fmap (getConst . getFlip . getFlip) . getDispose . getCompose
-- | Loosely, 'apportion' transforms a structure of arrays into an array
-- of structures, if by \"array\" one means an arbitrary collection type.
--
-- Depending on the collection's 'Prelude.Applicative' instance, this
-- may or may not be the inverse of 'align'.
--
-- >>> cols = Pair { getPair = ( "abc" , [ 0 , 1 , 2 ] ) }
-- >>> apportion cols
-- [ Pair { getPair = ( Identity 'a' , Identity 0 ) }
-- , Pair { getPair = ( Identity 'a' , Identity 1 ) }
-- , Pair { getPair = ( Identity 'a' , Identity 2 ) }
-- , Pair { getPair = ( Identity 'b' , Identity 0 ) }
-- , Pair { getPair = ( Identity 'b' , Identity 1 ) }
-- , Pair { getPair = ( Identity 'b' , Identity 2 ) }
-- , Pair { getPair = ( Identity 'c' , Identity 0 ) }
-- , Pair { getPair = ( Identity 'c' , Identity 1 ) }
-- , Pair { getPair = ( Identity 'c' , Identity 2 ) }
-- ]
-- >>> apportion $ fmap ZipList cols
-- ZipList
-- { getZipList =
-- [ Pair { getPair = ( Identity 'a' , Identity 0 ) }
-- , Pair { getPair = ( Identity 'b' , Identity 1 ) }
-- , Pair { getPair = ( Identity 'c' , Identity 2 ) }
-- ]
-- }
apportion :: (Prelude.Applicative f, Traversable g) => g f -> f (g Identity)
apportion = Prelude.fmap teardown . getDispose . traverse setup where
setup :: Prelude.Functor f => f x -> Dispose f void (Const x)
setup = Dispose . Prelude.fmap Const
teardown :: Functor g => Compose g (Flip Const) void -> g Identity
teardown = fmap (Identity . getConst . getFlip) . getCompose
{- Dispose -----------------------------------------------------------------------}
-- | If @f@ is a functor from /Hask/ to /Hask/, then, @forall (x :: k). Dispose f
-- x@ is a functor from /Hask^k/ to /Hask/
--
-- The name comes from the isomorphism @Dispose f ~ Flip (Compose f) :: k -> (k
-- -> *) -> *@, as a pun off the latin prefixes "com-", meaning together, and
-- "dis-", meaning apart.
newtype Dispose (f :: * -> *) (x :: k) (a :: k -> *) =
Dispose { getDispose :: f (a x) }
deriving (Show, Eq, Ord)
instance Prelude.Functor f => Functor (Dispose f x) where
fmap f (Dispose fx) = Dispose $ Prelude.fmap f fx
instance Prelude.Applicative f => Applicative (Dispose f x) where
pure a = Dispose $ Prelude.pure a
Dispose ff <*> Dispose fa = Dispose $ Prelude.liftA2 (~$~) ff fa
instance Prelude.Foldable t => Foldable (Dispose t x) where
foldr f b = Prelude.foldr f b . getDispose
foldMap f = Prelude.foldMap f . getDispose
instance Prelude.Traversable t => Traversable (Dispose t x) where
sequenceA = teardown . Prelude.traverse setup . getDispose where
setup :: Compose f a x -> Coyoneda f (Exists (a x))
setup = Coyoneda Exists . getCompose
teardown :: (Functor f, Prelude.Functor t) => Coyoneda f (t (Exists (a x))) -> f (Compose (Dispose t x) (Flip a))
teardown (Coyoneda k fax) = Compose . Dispose . Prelude.fmap Flip . unwrap k <$> fax
-- by parametricity, `t`'s implementation of `Prelude.sequenceA :: t (g e) ->
-- g (t e)` can't inspect the value of `e`, so all `Exists a` values
-- must be wrapped `a x` values, so this should be an okay use
-- of `unsafeGetExists`.
unwrap :: Prelude.Functor t => (b x -> t (Exists a)) -> b x -> t (a x)
unwrap k bx = Prelude.fmap (unsafeGetExists bx) $ k bx
unsafeGetExists :: proxy x -> Exists a -> a x
unsafeGetExists _ (Exists az) = unsafeCoerce az
data Exists (a :: k -> *) where
Exists :: a x -> Exists a
{- Coyoneda ---------------------------------------------------------------------}
-- | If @t@ is a functor from /Hask^k/ to /Hask/, then @Coyoneda t@ is a functor
-- from /Hask/ to /Hask/.
--
-- It's very similar to the 'Data.Functor.Coyoneda.Coyoneda' from the @kan-extensions@ package,
-- differing only in kind, and @Coyoneda t a@ is isomorphic to @t (Const a)@ for any 'Functor'.
data Coyoneda (t :: (k -> *) -> *) (u :: *) where
Coyoneda :: (forall x. a x -> u) -> t a -> Coyoneda t u
-- | convert a functor from its 'Coyoneda' representation
getCoyoneda :: Functor t => Coyoneda t a -> t (Const a)
getCoyoneda (Coyoneda f t) = Const . f <$> t
-- | convert a functor to its 'Coyoneda' representation
toCoyoneda :: t (Const a) -> Coyoneda t a
toCoyoneda = Coyoneda getConst
instance Prelude.Functor (Coyoneda t) where
fmap f (Coyoneda k t) = Coyoneda (f . k) t
instance Applicative t => Prelude.Applicative (Coyoneda t) where
pure a = toCoyoneda $ pure $ Const a
Coyoneda kf tu <*> Coyoneda ka tv = Coyoneda (k kf ka) (t tu tv) where
k :: (forall x. u x -> a -> b) -> (forall x. v x -> a) -> (forall x. Both u v x -> b)
k kf ka (Both (ux, vx)) = kf ux $ ka vx
t :: Applicative t => t u -> t v -> t (Both u v)
t = liftA2 $ curry Both
newtype Both (a :: k -> *) (b :: k -> *) (x :: k) = Both (a x, b x)
-- XXX: Both (Compose f 'Left) (Compose g 'Right) ~ Coproduct f g
instance Foldable t => Prelude.Foldable (Coyoneda t) where
foldr f b (Coyoneda k t) = foldr (f . k) b t
foldMap f (Coyoneda k t) = foldMap (f . k) t
instance Traversable t => Prelude.Traversable (Coyoneda t) where
sequenceA (Coyoneda k t) = Prelude.fmap teardown . getDispose . sequenceA $ setup . k <$> t where
setup :: Prelude.Functor f => f a -> Compose (Dispose f y) (Curry (Const a)) x
setup = Compose . Dispose . Prelude.fmap (Curry . Const)
teardown :: Functor t => Compose t (Flip (Curry (Const a))) y -> Coyoneda t a
teardown = Coyoneda (getConst . getCurry . getFlip) . getCompose
{- Product ----------------------------------------------------------------------}
-- | The product of two continuation kind functors is a continuation kind functor.
--
-- >>> data A z where A :: Int -> [x] -> [y] -> A '(x,y)
-- >>> data B z where B :: [(x,y)] -> B '(x,y)
-- >>> foo = Product . Pure . Compose . Pure . Curry $ A 0 "abc" [True, False]
-- >>> :t foo
-- foo :: Product (Pure Char) (Pure Bool) A
-- >>> a2b :: A z -> B z ; a2b (A _ xs ys) = B $ zip xs ys
-- >>> :t fmap a2b foo
-- fmap a2b foo :: Product (Pure Char) (Pure Bool) B
--
newtype Product (f :: (i -> *) -> *) (g :: (j -> *) -> *) (a :: (i,j) -> *) =
Product { getProduct :: f (Compose g (Curry a)) }
-- | helper to make a 'Product' when the inner type is already curried.
--
-- >>> comma = Pure . Compose . Pure $ ('a', True)
-- >>> :t comma
-- comma :: Pure Char (Compose (Pure Bool) (,))
-- >>> :t toProduct UncurryStrict comma
-- toProduct UncurryStrict comma
-- :: Product (Pure Char) (Pure Bool) (Uncurry (,))
toProduct :: (Functor f, Functor g) => (forall x y. a x y -> b '(x,y)) -> f (Compose g a) -> Product f g b
toProduct f = Product . fmap (Compose . fmap (Curry . f) . getCompose)
-- | helper to unwrap a 'Product' when the inner type is already curried.
--
-- >>> comma' = toProduct UncurryStrict . Pure . Compose . Pure $ ('a', True)
-- >>> :t comma'
-- comma' :: Product (Pure Char) (Pure Bool) (Uncurry (,))
-- >>> :t getProduct comma'
-- getProduct comma'
-- :: Pure Char (Compose (Pure Bool) (Curry (Uncurry (,))))
-- >>> :t fromProduct getUncurryStrict comma'
-- fromProduct getUncurryStrict comma'
-- :: Pure Char (Compose (Pure Bool) (,))
fromProduct :: (Functor f, Functor g) => (forall x y. b '(x,y) -> a x y) -> Product f g b -> f (Compose g a)
fromProduct f = fmap (Compose . fmap (f . getCurry) . getCompose) . getProduct
deriving instance Show (f (Compose g (Curry a))) => Show (Product f g a)
deriving instance Eq (f (Compose g (Curry a))) => Eq (Product f g a)
deriving instance Ord (f (Compose g (Curry a))) => Ord (Product f g a)
instance (Functor f, Functor g) => Functor (Product f g) where
fmap h = Product . fmap (Compose . fmap (Curry . h . getCurry) . getCompose) . getProduct
instance (Applicative f, Applicative g) => Applicative (Product f g) where
pure a = Product $ pure $ Compose $ pure $ Curry a
Product ff <*> Product fa = Product $ liftA2 (\(Compose gf) (Compose ga) -> Compose $ liftA2 (\(Curry f) (Curry a) -> Curry $ f ~$~ a) gf ga) ff fa
instance (Foldable f, Foldable g) => Foldable (Product f g) where
foldMap h = foldMap (foldMap (h . getCurry) . getCompose) . getProduct
instance (Traversable f, Traversable g) => Traversable (Product f g) where
sequenceA = fmap cleanup . traverse setup . getProduct where
setup :: (Applicative h, Traversable g) => Compose g (Curry (Compose h a)) x -> h (Compose2 (Compose2 (Compose g) Flip) (Curry2 a) x)
setup = fmap (Compose2 . Compose2) . traverse inner . getCompose
inner :: Functor h => Curry (Compose h a) x y -> h (Curry2 a x y)
inner = fmap Curry2 . getCompose . getCurry
cleanup :: (Functor f, Functor g) => Compose f (Flip (Compose2 (Compose2 (Compose g) Flip) (Curry2 a))) z -> Compose (Product f g) (Flip a) z
cleanup = Compose . Product . fmap (Compose . fmap (Curry . Flip . getCurry2 . getFlip) . getCompose . getCompose2 . getCompose2 . getFlip) . getCompose
newtype Curry2 (a :: (i,j) -> k -> *) (x :: i) (y :: j) (z :: k) = Curry2 { getCurry2 :: a '(x,y) z }
{- Coproduct --------------------------------------------------------------------}
-- | The coproduct of two continuation kind functors is a continuation kind functor.
--
-- >>> data A z where { AL :: i -> A ('Left i) ; AR :: j -> A ('Right j) }
-- >>> data B z where { BL :: i -> i -> B ('Left i) ; BR :: B ('Right j) }
-- >>> bar = Coproduct (Pure . Compose $ AL True, Pure . Compose $ AR 'a')
-- >>> :t bar
-- bar :: Coproduct (Pure Bool) (Pure Char) A
-- >>> a2b :: A z -> B z ; a2b (AL i) = BL i i ; a2b (AR _) = BR
-- >>> :t fmap a2b bar
-- fmap a2b bar :: Coproduct (Pure Bool) (Pure Char) B
newtype Coproduct (f :: (i -> *) -> *) (g :: (j -> *) -> *) (a :: Either i j -> *) =
Coproduct { getCoproduct :: (f (Compose a 'Left), g (Compose a 'Right)) }
deriving instance (Show (f (Compose a 'Left)), Show (g (Compose a 'Right))) => Show (Coproduct f g a)
deriving instance (Eq (f (Compose a 'Left)), Eq (g (Compose a 'Right))) => Eq (Coproduct f g a)
deriving instance (Ord (f (Compose a 'Left)), Ord (g (Compose a 'Right))) => Ord (Coproduct f g a)
instance (Functor f, Functor g) => Functor (Coproduct f g) where
fmap h (Coproduct (fal, gar)) = Coproduct (Compose . h . getCompose <$> fal, Compose . h . getCompose <$> gar)
instance (Applicative f, Applicative g) => Applicative (Coproduct f g) where
pure ax = Coproduct (pure (Compose ax), pure (Compose ax))
Coproduct (fhl, ghr) <*> Coproduct (fal, gar) = Coproduct (liftA2 go fhl fal, liftA2 go ghr gar) where
go (Compose hx) (Compose ax) = Compose (hx ~$~ ax)
instance (Foldable f, Foldable g) => Foldable (Coproduct f g) where
foldMap h (Coproduct (fal, gar)) = foldMap (h . getCompose) fal <> foldMap (h . getCompose) gar
instance (Traversable f, Traversable g) => Traversable (Coproduct f g) where
sequenceA (Coproduct (fhal, ghar)) = liftA2 teardown (setup fhal) (setup ghar) where
setup :: (Traversable t, Applicative h) => t (Compose (Compose h a) d) -> h (Compose t (Flip (Compose2 a d)))
setup = sequenceA . fmap (Compose . fmap Compose2 . getCompose . getCompose)
teardown :: (Functor f, Functor g) => Compose f (Flip (Compose2 a 'Left)) y -> Compose g (Flip (Compose2 a 'Right)) y -> Compose (Coproduct f g) (Flip a) y
teardown faly gary = Compose $ Coproduct (cleanup faly, cleanup gary)
cleanup :: Functor t => Compose t (Flip (Compose2 a d)) y -> t (Compose (Flip a y) d)
cleanup = fmap (Compose . Flip . getCompose2 . getFlip). getCompose
newtype Compose2 (a :: j -> k -> *) (d :: i -> j) (x :: i) (y :: k) = Compose2 { getCompose2 :: a (d x) y }
{- Pair -------------------------------------------------------------------------}
-- | A continuation kind functor for pairs.
--
-- >>> :t Pair (Identity True, Identity 'a')
-- Pair (Identity True, Identity 'a') :: Pair Bool Char Identity
newtype Pair (x0 :: k) (x1 :: k) (a :: k -> *) =
Pair { getPair :: (a x0, a x1) }
deriving (Show, Eq, Ord)
instance Functor (Pair x0 x1) where
fmap f (Pair (ax0, ax1)) = Pair (f ax0, f ax1)
instance Applicative (Pair x0 x1) where
pure ax = Pair (ax, ax)
Pair (fx0, fx1) <*> Pair (ax0, ax1) = Pair (fx0 ~$~ ax0, fx1 ~$~ ax1)
instance Foldable (Pair x0 x1) where
foldMap f (Pair (ax0, ax1)) = f ax0 <> f ax1
instance Traversable (Pair x0 x1) where
sequenceA (Pair (gax0, gax1)) = liftT2 (curry Pair) gax0 gax1
{- Tuple ------------------------------------------------------------------------}
-- | A continuation kind functor for tuples of arbitrary length.
--
-- >>> :t Identity True `Cons` Identity 'a' `Cons` Nil
-- Identity True `Cons` Identity 'a' `Cons` Nil
-- :: Tuple '[Bool, Char] Identity
data Tuple (xs :: [k]) (a :: k -> *) where
Nil :: Tuple '[] a
Cons :: a x -> !(Tuple xs a) -> Tuple (x ': xs) a
infixr 5 `Cons`
instance Show (Tuple '[] a) where
showsPrec _ Nil = showString "Nil"
instance (Show (a x), Show (Tuple xs a)) => Show (Tuple (x ': xs) a) where
showsPrec p (ax `Cons` t) = showParen (p > 5) $ showsPrec 6 ax . showString " `Cons` " . showsPrec 0 t
instance Eq (Tuple '[] a) where
Nil == Nil = True
instance (Eq (a x), Eq (Tuple xs a)) => Eq (Tuple (x ': xs) a) where
Cons ax at == Cons bx bt = ax == bx && at == bt
instance Ord (Tuple '[] a) where
Nil `compare` Nil = EQ
instance (Ord (a x), Ord (Tuple xs a)) => Ord (Tuple (x ': xs) a) where
Cons ax at `compare` Cons bx bt = compare ax bx `mappend` compare at bt
instance Functor (Tuple xs) where
fmap _ Nil = Nil
fmap f (ax `Cons` axs) = f ax `Cons` fmap f axs
instance Applicative (Tuple '[]) where
pure _ = Nil
_ <*> _ = Nil
instance Applicative (Tuple xs) => Applicative (Tuple (x ': xs)) where
pure ax = ax `Cons` pure ax
Cons fx fxs <*> Cons ax axs = Cons (fx ~$~ ax) (fxs <*> axs)
instance Foldable (Tuple xs) where
foldr _ z Nil = z
foldr f z (Cons fx fxs) = f fx (foldr f z fxs)
instance Traversable (Tuple xs) where
sequenceA Nil = pure (Compose Nil)
sequenceA (Compose fax `Cons` cfaxs) = liftA2 go fax $ sequenceA cfaxs where
go :: forall a x y xs. a x y -> Compose (Tuple xs) (Flip a) y -> Compose (Tuple (x ': xs)) (Flip a) y
go axy (Compose ayxs) = Compose $ Cons (Flip axy) ayxs
{- Tagged -----------------------------------------------------------------------}
-- | A continuation kind functor for tagged unions
--
-- >>> :t [ Here (Identity True), There $ Here (Identity 'a') ]
-- [ Here (Identity True), There $ Here (Identity 'a') ]
-- :: [Tagged (Bool : Char : xs) Identity]
data Tagged (xs :: [k]) (a :: k -> *) where
Here :: a x -> Tagged (x ': xs) a
There :: !(Tagged xs a) -> Tagged (x ': xs) a
instance Show (Tagged '[] a) where
showsPrec _ t = seq t $ error "Tagged '[] a is uninhabited"
instance Eq (Tagged '[] a) where
t == t' = seq t $ seq t' $ error "Tagged '[] a is uninhabited"
instance Ord (Tagged '[] a) where
t `compare` t' = seq t $ seq t' $ error "Tagged '[] a is uninhabited"
instance (Show (a x), Show (Tagged xs a)) => Show (Tagged (x ': xs) a) where
showsPrec p (Here ax) = showParen (p > 10) $ showString "Here " . showsPrec 11 ax
showsPrec p (There t) = showParen (p > 10) $ showString "There " . showsPrec 11 t
instance (Eq (a x), Eq (Tagged xs a)) => Eq (Tagged (x ': xs) a) where
Here ax == Here bx = ax == bx
There t == There t' = t == t'
_ == _ = False
instance (Ord (a x), Ord (Tagged xs a)) => Ord (Tagged (x ': xs) a) where
Here ax `compare` Here bx = ax `compare` bx
There t `compare` There t' = t `compare` t'
Here _ `compare` There _ = LT
There _ `compare` Here _ = GT
instance Functor (Tagged xs) where
fmap f (Here ax) = Here (f ax)
fmap f (There t) = There (fmap f t)
instance Foldable (Tagged xs) where
foldMap f (Here ax) = f ax
foldMap f (There t) = foldMap f t
instance Traversable (Tagged xs) where
sequenceA (Here (Compose fax)) = Compose . Here . Flip <$> fax
sequenceA (There t) = Compose . There . getCompose <$> sequenceA t
{- Const ------------------------------------------------------------------------}
instance Functor (Const a) where
fmap _ = Const . getConst
instance Monoid m => Applicative (Const m) where
pure _ = Const mempty
Const mf <*> Const ma = Const (mf <> ma)
instance Foldable (Const m) where
foldMap _ _ = mempty
instance Traversable (Const m) where
sequenceA (Const a) = pure $ Compose $ Const a
{- Compose ----------------------------------------------------------------------}
instance (Prelude.Functor f, Functor g) => Functor (Compose f g) where
fmap f = Compose . Prelude.fmap (fmap f) . getCompose
instance (Prelude.Applicative f, Applicative g) => Applicative (Compose f g) where
pure a = Compose $ Prelude.pure $ pure a
Compose fgh <*> Compose fga = Compose $ Prelude.liftA2 (<*>) fgh fga
instance (Prelude.Foldable f, Foldable g) => Foldable (Compose f g) where
foldMap f = Prelude.foldMap (foldMap f) . getCompose
instance (Prelude.Traversable f, Traversable g) => Traversable (Compose f g) where
sequenceA = fmap teardown . sequenceA . setup where
setup :: (Prelude.Functor f, Traversable g, Applicative h) => Compose f g (Compose h a) -> Dispose f (Flip a) (Compose h (Compose g))
setup = Dispose . Prelude.fmap (Compose . sequenceA) . getCompose
teardown :: Prelude.Functor f => Compose (Dispose f (Flip a)) (Flip (Compose g)) y -> Compose (Compose f g) (Flip a) y
teardown = Compose . Compose . Prelude.fmap (getCompose . getFlip) . getDispose . getCompose
{- Flip -------------------------------------------------------------------------}
-- | a type-level version of 'Prelude.flip', it's used in the definition of
-- 'traverse' and 'sequenceA' as a way to reverse the order in which parameters
-- are passed.
--
-- @Flip (Flip a)@ is isomorphic to @Identity a@
--
-- >>> :t Flip . Flip
-- Flip . Flip :: a y x -> Flip (Flip a) y x
-- >>> :t getFlip . getFlip
-- getFlip . getFlip :: Flip (Flip a) x y -> a x y
newtype Flip (a :: i -> j -> *) (y :: j) (x :: i) =
Flip { getFlip :: a x y }
deriving (Show, Eq, Ord)
-- XXX: Prelude.Bifunctor a => Prelude.Bifunctor (Flip a)
{- Curry ------------------------------------------------------------------------}
-- | a type-level version of 'Prelude.curry', it's used to convert between
-- types of kind @(i,j) -> *@ and types of kind @i -> j -> *@
newtype Curry (a :: (i,j) -> *) (x :: i) (y :: j) = Curry { getCurry :: a '(x,y) }
-- XXX: Functor (a x) => Functor (Curry (Uncurry a) x)
deriving instance Show (a '(x,y)) => Show (Curry a x y)
deriving instance Eq (a '(x,y)) => Eq (Curry a x y)
deriving instance Ord (a '(x,y)) => Ord (Curry a x y)
{- Uncurry ----------------------------------------------------------------------}
-- | A type-level version of 'Prelude.uncurry', it's used to convert between
-- types of kind @i -> j -> *@ and types of kind @(i,j) -> *@.
newtype Uncurry (a :: i -> j -> *) (z :: (i,j)) =
UncurryLazy { getUncurryLazy :: forall x y. (z ~ '(x,y)) => a x y }
-- ^ The 'UncurryLazy' constructor is useful when you need to
-- construct/destruct an @Uncurry a z@ value without placing restrictions on
-- @z@
--
-- >>> :t (\(UncurryLazy axy) -> UncurryLazy axy) :: Uncurry a z -> Uncurry a z
-- (\(UncurryLazy axy) -> UncurryLazy axy) :: Uncurry a z -> Uncurry a z
-- :: Uncurry a z -> Uncurry a z
-- >>> import Data.Tuple (swap)
-- >>> :t (\(UncurryLazy axy) -> UncurryLazy $ Flip $ swap axy) :: Uncurry (,) z -> Uncurry (Flip (,)) z
-- (\(UncurryLazy axy) -> UncurryLazy $ Flip $ swap axy) :: Uncurry (,) z -> Uncurry (Flip (,)) z
-- :: Uncurry (,) z -> Uncurry (Flip (,)) z
--
-- It is slightly finnicky, and doesn't work well with function composition
-- (i.e. @.@), and requires more hints from the compiler.
--
-- >>> :t (UncurryLazy . getUncurryLazy) :: Uncurry a z -> Uncurry a z
-- <BLANKLINE>
-- <interactive>:1:2: error:
-- • Couldn't match type ‘a1 x0 y0’
-- with ‘forall x y. z1 ~ '(x, y) => a1 x y’
-- ...
-- >>> :t (\(UncurryLazy axy) -> UncurryLazy axy)
-- <BLANKLINE>
-- <interactive>:1:36: error:
-- • Couldn't match type ‘z’ with ‘'(x, y)’
-- arising from a use of ‘axy’
-- because type variables ‘x’, ‘y’ would escape their scope
-- ...
-- | The 'UncurryStrict' pattern is useful when you need to construct/destruct
-- an 'Uncurry a '(x,y)' value
--
-- >>> :t UncurryStrict . getUncurryStrict
-- UncurryStrict . getUncurryStrict
-- :: Uncurry a '(x, y) -> Uncurry a '(x, y)
-- >>> import Data.Tuple (swap)
-- >>> :t UncurryStrict . Flip . swap . getUncurryStrict
-- UncurryStrict . Flip . swap . getUncurryStrict
-- :: Uncurry (,) '(x, y) -> Uncurry (Flip (,)) '(x, y)
--
-- It works well with function composition and requires fewer hints, but cannot
-- be used to construct or match values of type @Uncurry a z@, such as are
-- needed by 'fmap'.
--
-- >>> :t (\(UncurryLazy axy) -> UncurryStrict axy) :: Uncurry a z -> Uncurry a z
-- <BLANKLINE>
-- <interactive>:1:38: error:
-- • Couldn't match type ‘z1’ with ‘'(x0, y0)’
-- ...
-- • In the first argument of ‘UncurryStrict’, namely ‘axy’
-- ...
-- >>> :t (\(UncurryStrict axy) -> UncurryLazy axy) :: Uncurry a z -> Uncurry a z
-- <BLANKLINE>
-- <interactive>:1:4: error:
-- • Couldn't match type ‘z1’ with ‘'(x0, y0)’
-- ...
-- • In the pattern: UncurryStrict axy
-- ...
--
-- However, it is very useful when paired with 'toProduct'.
pattern UncurryStrict :: a x y -> Uncurry a '(x,y)
pattern UncurryStrict axy <- (getUncurryStrict -> axy)
where UncurryStrict axy = UncurryLazy axy
-- | a pseudo-record accessor, corresponding to matching the 'UncurryStrict'
-- pattern. Can be useful when paired with 'fromProduct'
getUncurryStrict :: Uncurry a '(x,y) -> a x y
getUncurryStrict = getUncurryLazy
-- | a helper for lifting functions on curried types to functions
-- on their uncurried equivalents. Very useful when using the 'Functor'
-- instance for 'Product's.
--
-- >>> comma' = toProduct UncurryStrict . Pure . Compose . Pure $ ('a', True)
-- >>> :t comma'
-- comma' :: Product (Pure Char) (Pure Bool) (Uncurry (,))
-- >>> :t uncurried (const . snd) <$> comma'
-- uncurried (const . snd) <$> comma'
-- :: Product (Pure Char) (Pure Bool) (Uncurry (->))
uncurried :: (forall x y. a x y -> b x y) -> Uncurry a z -> Uncurry b z
uncurried f u = UncurryLazy $ f $ getUncurryLazy u
deriving instance Show (a x y) => Show (Uncurry a '(x,y))
deriving instance Eq (a x y) => Eq (Uncurry a '(x,y))
deriving instance Ord (a x y) => Ord (Uncurry a '(x,y))
{- Pure -------------------------------------------------------------------------}
-- | A type-level version of 'Prelude.pure' for 'Control.Monad.Cont'
--
-- Mainly useful when constructing continuation kind functors using
-- 'Product' and 'Coproduct'.
newtype Pure (x :: k) (a :: k -> *) = Pure { getPure :: a x }
deriving (Show, Eq, Ord)
instance Functor (Pure x) where
fmap h = Pure . h . getPure
instance Applicative (Pure x) where
pure = Pure
Pure fx <*> Pure ax = Pure (fx ~$~ ax)
instance Foldable (Pure x) where
foldMap h (Pure ax) = h ax
instance Traversable (Pure x) where
sequenceA (Pure ax) = liftT1 Pure ax
{--------------------------------------------------------------------------------}
-- XXX: Is ForAll useful?
--
-- newtype ForAll (a :: k -> *) = ForAll { getForAll :: forall x. a x }
-- (Functor, Applicative, Foldable, Traversable?)
-- XXX: Is Arr useful?
--
-- newtype Arr (a :: k -> *) (b :: k -> *) = Arr { runArr :: forall (x :: k). a x -> b x }
-- (Functor, Applicative)