-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpaired.py
executable file
·487 lines (383 loc) · 15.8 KB
/
paired.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
This program attempts to read information from two sets of image metadata
and provide an analysis of what kind of stereo pair they might make.
It currently only works with ISIS cubes that have had spiceinit run on
them. However, it could be adapted to read other kinds of image metadata
and perform its calculations.
The math and quality metrics are based on Becker et al. 2015,
Criteria for Automated Identification of Stereo Image Pairs
(https://www.hou.usra.edu/meetings/lpsc2015/pdf/2703.pdf)
"""
# Copyright 2020-2021, 2023, Ross A. Beyer ([email protected])
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import math
import logging
import os
import subprocess
import sys
from collections import abc
# from functools import reduce
from pathlib import Path
from osgeo import ogr
import pvl
import kalasiris as isis
class ImgInfo:
def __init__(self, path: os.PathLike):
# First try it as an ISIS cube:
try:
cam_to = Path(path).with_suffix(".caminfo")
isis.caminfo(path, to=cam_to, polygon=True)
caminfo = pvl.load(str(cam_to))
# cam_to.unlink()
except subprocess.CalledProcessError:
# Maybe it is the PVL output of caminfo?
caminfo = pvl.load(str(path))
camgeo = caminfo["Caminfo"]["Geometry"]
self.path = Path(path)
self.incidence_angle = float(camgeo["IncidenceAngle"])
self.emission_angle = float(camgeo["EmissionAngle"])
self.phase_angle = float(camgeo["PhaseAngle"])
self.sc_azimuth = float(camgeo["SubSpacecraftGroundAzimuth"])
self.solar_azimuth = float(camgeo["SubSolarGroundAzimuth"])
self.gsd = float(camgeo["ObliquePixelResolution"])
self.geometry = ogr.CreateGeometryFromWkt(
caminfo["Caminfo"]["Polygon"]["GisFootprint"]
)
def incidence_quality(self) -> float:
return incidence_quality(self.incidence_angle)
def emission_quality(self) -> float:
return emission_quality(self.emission_angle)
def phase_quality(self) -> float:
return phase_quality(self.phase_angle)
def qualities(self) -> tuple:
return (
self.incidence_quality(),
self.emission_quality(),
self.phase_quality(),
)
def arg_parser():
p = argparse.ArgumentParser(
description=__doc__,
epilog="""The quality values reported by this program are based on the
recommendations and limitations in Becker et al. (2015). They have
a value of one for an ideal value, between zero and one for a value
within the acceptable limits, and less than zero (the more negative,
the worse) if the value is beyond the acceptable limit.
""",
)
p.add_argument(
"-v", "--verbose", action="store_true", help="Will report information."
)
p.add_argument("files", metavar="file", nargs=2, help="Cube files or caminfo output.")
return p
def main():
args = arg_parser().parse_args()
log_level = logging.WARNING
if args.verbose:
log_level = logging.INFO
logging.basicConfig(format="%(message)s", level=log_level)
im1 = ImgInfo(args.files[0])
im2 = ImgInfo(args.files[1])
try:
overlap = area_overlap(im1.geometry, im2.geometry)
except ValueError:
overlap = 0
# Gather qualities:
parallax_ang = parallax(
math.radians(im1.emission_angle),
math.radians(im1.sc_azimuth),
math.radians(im2.emission_angle),
math.radians(im2.sc_azimuth),
)
gsd_q = gsd_quality(im1.gsd, im2.gsd)
parallax_height_ratio = dp(
math.radians(im1.emission_angle),
math.radians(im1.sc_azimuth),
math.radians(im2.emission_angle),
math.radians(im2.sc_azimuth),
)
stereo_q = stereo_strength_quality(parallax_height_ratio)
stereo_tip_distance = dsh(
math.radians(im1.incidence_angle),
math.radians(im1.solar_azimuth),
math.radians(im2.incidence_angle),
math.radians(im2.solar_azimuth),
)
illum_q = illumination_quality(stereo_tip_distance)
delta_sol_q = delta_solar_az_quality(im1.solar_azimuth, im2.solar_azimuth)
overlap_q = stereo_overlap_quality(overlap)
output_string = f"""
Stereo Pair Quality Report:
Image 1: {im1.path.name}
Image 2: {im2.path.name}
Image 1 Image 2
Incidence Angle: {im1.incidence_angle:>6.2f} {im2.incidence_angle:>6.2f}
Quality: {im1.incidence_quality():>6.2f} {im2.incidence_quality():>6.2f}
Emission Angle: {im1.emission_angle:>6.2f} {im2.emission_angle:>6.2f}
Quality: {im1.emission_quality():>6.2f} {im2.emission_quality():>6.2f}
Phase Angle: {im1.phase_angle:>6.2f} {im2.phase_angle:>6.2f}
Quality: {im1.phase_quality():>6.2f} {im2.phase_quality():>6.2f}
Subspacecraft Azimuth: {im1.sc_azimuth:>6.2f} {im2.sc_azimuth:>6.2f}
Subsolar Azimuth: {im2.solar_azimuth:>6.2f} {im2.solar_azimuth:>6.2f}
Quality: {delta_sol_q:>6.2f}
Ground Sample Distance: {im1.gsd:>6.2f} {im2.gsd:>6.2f}
Quality: {gsd_q:>6.2f}
Stereo Overlap Fraction: {overlap:.2f}
Overlap Quality: {overlap_q:.2f}
Parallax Angle: {math.degrees(parallax_ang):.2f}
Parallax/Height Ratio (dp): {parallax_height_ratio:.2f}
Stereo Strength Quality: {stereo_q:.2f}
Stereo Tip Distance (dsh): {stereo_tip_distance:.2f}
Illumination Quality: {illum_q:.2f}
"""
# Evaluate qualities:
qualities = [gsd_q, stereo_q, illum_q, delta_sol_q, overlap_q]
qualities.extend(im1.qualities())
qualities.extend(im2.qualities())
neg_q = list()
pos_q = list()
for q in qualities:
if q > 0:
pos_q.append(q)
else:
neg_q.append(q)
if len(neg_q) != 0:
output_string += f"""
This pair of images probably won't make a good stereo pair because there were
{len(neg_q)} qualities less than or equal to zero.
"""
# The commented out code below wraps up all the quality factors
# into a Drake-Equation-like overall quality metric, but I'm not
# sure that doing so actually gets you anywhere. I don't think
# that there is an independent absolute measure of 'stereo quality'
# since there are so many different ways to approach the problem.
#
# stereo_quality = reduce(lambda x, y: x * y, pos_q)
# output_string += f"""
# The overall quality factor for this stereo pair is: {stereo_quality:5.3f}
# This value is the result of multiplying all of the positive qualities
# together, and ranges from zero to one.
# """
print(output_string)
return
def area_overlap(geom1: ogr.Geometry, geom2: ogr.Geometry):
"""Returns a ratio of areas which represent the area of the
intersection area of *geom1* and *geom2*, divided by the
union of areas of of *geom1*, and *geom2*."""
# for g in (geom1, geom2):
# if not g.isValid():
# raise ValueError(f"Geometry {g} is not valid!")
if not geom1.Intersects(geom2):
raise ValueError(f"Geometries do not overlap.")
intersection_geom = geom1.Buffer(0.01).Intersection(geom2.Buffer(0.01))
union_geom = geom1.Buffer(0.01).Union(geom2.Buffer(0.01))
return intersection_geom.GetArea() / union_geom.GetArea()
def quality(value: float, ideal, low: float, high: float) -> float:
"""Return a quality value based on *value*.
The value of *ideal* would be a perfect value of *value*, but
if *value* is between *low* and *high* it is acceptable. *ideal*
must be between *low* and *high*, otherwise a ValueError is raised.
A quality value of one indicates that *value* is *ideal*.
Quality values between zero and one indicate that *value*
is between *low* and *high* (the closer to *ideal*, the higher
the quality score). Values less than zero are beyond the
acceptable range of *low* and *high*.
If *ideal* is a two-tuple, then this indicates that all values
between and including those values are "ideal" values. Again,
these two values must be between *low* and *high*
"""
if isinstance(ideal, abc.Sequence):
if len(ideal) == 2:
if not (low <= ideal[0] <= ideal[1] <= high):
raise ValueError(
f"The ideal values ({ideal}) is are not between low "
f"({low}) and high ({high})."
)
if ideal[0] <= value <= ideal[1]:
return 1
if value < ideal[0]:
return (value - low) / (ideal[0] - low)
else:
return (value - high) / (ideal[1] - high)
else:
raise ValueError(
f"The provided ideal value must be either a single value or a"
f"two-tuple. It was neither: {ideal}"
)
else:
if not (low <= ideal <= high):
raise ValueError(
f"The ideal value ({ideal}) is not between low ({low}) and "
f"high ({high})."
)
if value == ideal:
return 1
if value < ideal:
return (value - low) / (ideal - low)
else:
return (value - high) / (ideal - high)
def incidence_quality(incidence_angle: float) -> float:
"""Returns a quality score based on the value of *incidence_angle*,
which is expected to be in decimal degrees, zero being normal to
the surface.
Becker et al. (2015) indicates:
- Limits: Between 40° and 65° depending on smoothness
(shadows to be avoided).
- Recommended: Nominally 50°
"""
return quality(incidence_angle, 50, 40, 65)
def emission_quality(emission_angle: float) -> float:
"""Returns a quality score based on the value of *emission_angle*,
which is expected to be in decimal degrees, zero being normal to
the surface.
Becker et al. (2015) indicates:
- Limits: Between 0° and the complement of the maximum slope
(conservatively 45°, greater for smoother terrains) for optical images.
Greater than the slope (≥15° even for smooth surfaces) for radar.
- Recommended: No recommendation
"""
return quality(emission_angle, 22.5, 0, 45)
def phase_quality(phase_angle: float) -> float:
"""Returns a quality score based on the value of *phase_angle*,
which is expected to be in decimal degrees, zero being normal to
the surface.
Becker et al. (2015) indicates:
- Limits: Between 5° and 120°.
- Recommended: ≥ 30°
"""
return quality(phase_angle, 60, 5, 120)
def gsd_quality(gsd1: float, gsd2: float) -> float:
"""Returns a quality score based on the two ground
sample distances, *gsd1* and *gsd2*.
Image pairs with GSD ratios larger than 2.5 can be used but are
not optimal, as details only seen in the smaller scale image
will be lost. If required, images with ratios greater than ~2.5
should be resampled to the GSD of the lower scale image
(Becker at al., 2015).
"""
ratio = max(gsd1, gsd2) / min(gsd1, gsd2)
return quality(ratio, 1, 1, 2.5)
def stereo_strength_quality(parallax_height_ratio: float) -> float:
"""Returns a quality score based on the Parallax/Height Ratio (*dp*).
Becker et al. (2015) indicates:
- Limits: Between 0.1 (5°) and 1 (~45°).
- Recommended: 0.4 (20°) to 0.6 (30°).
"""
return quality(parallax_height_ratio, (0.4, 0.6), 0.1, 1)
def illumination_quality(shadow_tip_distance: float) -> float:
"""Returns a quality score based on the Shadow-Tip Distance (*dsh*).
Becker et al. (2015) indicates:
- Limits: 0 to 2.58.
- Recommended: 0
"""
return quality(shadow_tip_distance, 0, 0, 2.58)
def delta_solar_az_quality(az1: float, az2: float) -> float:
"""Returns a quality score based on the two solar azimuth values,
in degrees.
In practice, Shadow-Tip Distance alone does not guarantee similar
illumination. The absolute difference in solar azimuth angle
between stereo pairs can be optionally constrained.
Becker et al. (2015) indicates:
- Limits: 0° to 100°.
- Recommended: ≤ 20°
"""
az_diff = abs(az1 - az2)
return quality(az_diff, (0, 20), 0, 100)
def stereo_overlap_quality(area_fraction: float) -> float:
"""Returns a quality score based on the stereo area overlap.
Becker et al. (2015) indicates:
- Limits: Between 30% and 100%.
- Recommended: 50% to 100%.
"""
return quality(area_fraction, (0.5, 1.0), 0.3, 1)
def parallax(
emission1: float, gndaz1: float, emission2: float, gndaz2: float
) -> float:
"""Returns the parallax angle between the two look vectors described
by the emission angles and sub-spacecraft ground azimuth angles.
Input angles are assumed to be radians, as is the return value."""
def x(emi, gndaz):
return math.sin(gndaz) * math.sin(emi)
def y(emi, gndaz):
return math.cos(gndaz) * math.sin(emi)
def z(emi):
return math.cos(emi)
one_dot_two = (
(x(emission1, gndaz1) * x(emission2, gndaz2))
+ (y(emission1, gndaz1) * y(emission2, gndaz2))
+ (z(emission1) * z(emission2))
)
return math.acos(one_dot_two)
def dp(
emission1: float,
gndaz1: float,
emission2: float,
gndaz2: float,
radar=False,
):
"""Returns the Parallax/Height Ratio (dp) as detailed in
Becker et al.(2015).
The input angles are assumed to be in radians. If *radar* is true,
then cot() is substituted for tan() in the calculations.
Physically, dp represents the amount of parallax difference
that would be measured between an object in the two images, for
unit height.
"""
def emission_trig(emi: float):
e = math.tan(emi)
if radar:
# Cotangent is 1 / tan()
return 1 / e
else:
return e
def px(emi: float, scazgnd: float):
return -1 * emission_trig(emi) * math.cos(scazgnd)
def py(emi: float, scazgnd: float):
return emission_trig(emi) * math.sin(scazgnd)
px1 = px(emission1, gndaz1)
px2 = px(emission2, gndaz2)
py1 = py(emission1, gndaz1)
py2 = py(emission2, gndaz2)
return math.sqrt(math.pow(px1 - px2, 2) + math.pow(py1 - py2, 2))
def dsh(
incidence1: float, solar_az1: float, incidence2: float, solar_az2: float
):
"""Returns the Shadow-Tip Distance (dsh) as detailed in
Becker et al.(2015).
The input angles are assumed to be in radians.
This is defined as the distance between the tips of the shadows
in the two images for a hypothetical vertical post of unit
height. The "shadow length" describes the shadow of a hypothetical
pole so it applies whether there are actually shadows in the
image or not. It's a simple and consistent geometrical way to
quantify the difference in illumination. This quantity is
computed analogously to dp.
"""
def shx(inc: float, sunazgnd: float):
return -1 * math.tan(inc) * math.cos(sunazgnd)
def shy(inc: float, sunazgnd: float):
return math.tan(inc) * math.sin(sunazgnd)
shx1 = shx(incidence1, solar_az1)
shx2 = shx(incidence2, solar_az2)
shy1 = shy(incidence1, solar_az1)
shy2 = shy(incidence2, solar_az2)
return math.sqrt(math.pow(shx1 - shx2, 2) + math.pow(shy1 - shy2, 2))
if __name__ == "__main__":
try:
sys.exit(main())
except ValueError as err:
sys.exit(err)