-
Notifications
You must be signed in to change notification settings - Fork 67
/
detector.go
831 lines (725 loc) · 24 KB
/
detector.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
/*
* Copyright © 2021-present Peter M. Stahl [email protected]
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either expressed or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package lingua
import (
"archive/zip"
"bytes"
"embed"
"fmt"
"github.com/pemistahl/lingua-go/serialization"
"github.com/shopspring/decimal"
"golang.org/x/exp/maps"
"golang.org/x/exp/slices"
"google.golang.org/protobuf/proto"
"io"
"math"
"sort"
"strings"
"sync"
"unicode/utf8"
)
//go:embed language-models
var languageModels embed.FS
var unigramModels sync.Map
var bigramModels sync.Map
var trigramModels sync.Map
var quadrigramModels sync.Map
var fivegramModels sync.Map
// LanguageDetector is the interface describing the available methods
// for detecting the language of some textual input.
type LanguageDetector interface {
// DetectLanguageOf detects the language of the given text.
// The boolean return value indicates whether a language can be reliably
// detected. If this is not possible, (Unknown, false) is returned.
DetectLanguageOf(text string) (Language, bool)
// DetectMultipleLanguagesOf attempts to detect multiple languages in
// mixed-language text. This feature is experimental and under continuous
// development.
//
// A slice of DetectionResult is returned containing an entry for each
// contiguous single-language text section as identified by the library.
// Each entry consists of the identified language, a start index and an
// end index. The indices denote the substring that has been identified
// as a contiguous single-language text section.
DetectMultipleLanguagesOf(text string) []DetectionResult
// ComputeLanguageConfidenceValues computes confidence values for each
// language supported by this detector for the given input text. These
// values denote how likely it is that the given text has been written
// in any of the languages supported by this detector.
//
// A slice of ConfidenceValue is returned containing those languages which
// the calling instance of LanguageDetector has been built from. The entries
// are sorted by their confidence value in descending order. Each value is
// a probability between 0.0 and 1.0. The probabilities of all languages
// will sum to 1.0. If the language is unambiguously identified by the rule
// engine, the value 1.0 will always be returned for this language. The
// other languages will receive a value of 0.0.
ComputeLanguageConfidenceValues(text string) []ConfidenceValue
// ComputeLanguageConfidence computes the confidence value for the given
// language and input text. This value denotes how likely it is that the
// given text has been written in the given language.
//
// The value that this method computes is a number between 0.0 and 1.0.
// If the language is unambiguously identified by the rule engine, the value
// 1.0 will always be returned. If the given language is not supported by
// this detector instance, the value 0.0 will always be returned.
ComputeLanguageConfidence(text string, language Language) float64
}
type languageDetector struct {
languages []Language
minimumRelativeDistance float64
isLowAccuracyModeEnabled bool
languagesWithUniqueCharacters []Language
oneLanguageAlphabets map[alphabet]Language
unigramLanguageModels *sync.Map
bigramLanguageModels *sync.Map
trigramLanguageModels *sync.Map
quadrigramLanguageModels *sync.Map
fivegramLanguageModels *sync.Map
}
func newLanguageDetector(
languages []Language,
minimumRelativeDistance float64,
isEveryLanguageModelPreloaded bool,
isLowAccuracyModeEnabled bool,
) languageDetector {
detector := languageDetector{
languages,
minimumRelativeDistance,
isLowAccuracyModeEnabled,
collectLanguagesWithUniqueCharacters(languages),
collectOneLanguageAlphabets(languages),
&unigramModels,
&bigramModels,
&trigramModels,
&quadrigramModels,
&fivegramModels,
}
if isEveryLanguageModelPreloaded {
detector.preloadLanguageModels(languages)
}
return detector
}
func (detector languageDetector) preloadLanguageModels(languages []Language) {
var wg sync.WaitGroup
for _, language := range languages {
wg.Add(1)
go func(language Language, wg *sync.WaitGroup) {
defer wg.Done()
loadLanguageModels(detector.trigramLanguageModels, language, 3)
if !detector.isLowAccuracyModeEnabled {
loadLanguageModels(detector.unigramLanguageModels, language, 1)
loadLanguageModels(detector.bigramLanguageModels, language, 2)
loadLanguageModels(detector.quadrigramLanguageModels, language, 4)
loadLanguageModels(detector.fivegramLanguageModels, language, 5)
}
}(language, &wg)
}
wg.Wait()
}
func (detector languageDetector) DetectLanguageOf(text string) (Language, bool) {
confidenceValues := detector.ComputeLanguageConfidenceValues(text)
mostLikely := confidenceValues[0]
secondMostLikely := confidenceValues[1]
if mostLikely.Value() == secondMostLikely.Value() {
return Unknown, false
}
if (mostLikely.Value() - secondMostLikely.Value()) < detector.minimumRelativeDistance {
return Unknown, false
}
return mostLikely.Language(), true
}
func (detector languageDetector) DetectMultipleLanguagesOf(text string) []DetectionResult {
if len(text) == 0 {
return []DetectionResult{}
}
tokenWithoutWhitespaceIndices := tokensWithoutWhitespace.FindAllStringIndex(text, -1)
if len(tokenWithoutWhitespaceIndices) == 0 {
return []DetectionResult{}
}
var results []detectionResult
languageCounts := make(map[Language]int)
language, _ := detector.DetectLanguageOf(text)
languageCounts[language]++
for _, tokenIndex := range tokenWithoutWhitespaceIndices {
if tokenIndex[1]-tokenIndex[0] < 5 {
continue
}
word := text[tokenIndex[0]:tokenIndex[1]]
language, _ = detector.DetectLanguageOf(word)
languageCounts[language]++
}
languages := maps.Keys(languageCounts)
if len(languages) == 1 {
result := newDetectionResult(
0,
len(text),
len(tokenWithoutWhitespaceIndices),
languages[0],
)
results = append(results, result)
} else {
previousDetectorLanguages := make([]Language, len(detector.languages))
copy(previousDetectorLanguages, detector.languages)
detector.languages = languages
currentStartIndex := 0
currentEndIndex := 0
wordCount := 0
currentLanguage := Unknown
tokenIndices := tokensWithOptionalWhitespace.FindAllStringIndex(text, -1)
lastIndex := len(tokenIndices) - 1
for i, tokenIndex := range tokenIndices {
word := text[tokenIndex[0]:tokenIndex[1]]
language, _ = detector.DetectLanguageOf(word)
if i == 0 {
currentLanguage = language
}
if language != currentLanguage {
result := newDetectionResult(currentStartIndex, currentEndIndex, wordCount, currentLanguage)
results = append(results, result)
currentStartIndex = currentEndIndex
currentLanguage = language
wordCount = 0
}
currentEndIndex = tokenIndex[1]
wordCount++
if i == lastIndex {
result := newDetectionResult(currentStartIndex, currentEndIndex, wordCount, currentLanguage)
results = append(results, result)
}
}
if len(results) > 1 {
var mergeableResultIndices []int
for i, result := range results {
if result.wordCount == 1 {
mergeableResultIndices = append(mergeableResultIndices, i)
}
}
results = mergeAdjacentResults(results, mergeableResultIndices)
if len(results) > 1 {
mergeableResultIndices = nil
for i := 0; i < len(results)-1; i++ {
if results[i].Language() == results[i+1].Language() {
mergeableResultIndices = append(mergeableResultIndices, i+1)
}
}
results = mergeAdjacentResults(results, mergeableResultIndices)
}
}
detector.languages = previousDetectorLanguages
}
detectionResults := make([]DetectionResult, len(results))
for i, result := range results {
detectionResults[i] = DetectionResult(result)
}
return detectionResults
}
func (detector languageDetector) ComputeLanguageConfidenceValues(text string) []ConfidenceValue {
values := make(confidenceValueSlice, len(detector.languages))
for i, language := range detector.languages {
values[i] = newConfidenceValue(language, 0)
}
words := splitTextIntoWords(text)
if len(words) == 0 {
sort.Sort(values)
return values
}
languageDetectedByRules := detector.detectLanguageWithRules(words)
if languageDetectedByRules != Unknown {
for i := range values {
if values[i].Language() == languageDetectedByRules {
values[i] = newConfidenceValue(languageDetectedByRules, 1)
break
}
}
sort.Sort(values)
return values
}
filteredLanguages := detector.filterLanguagesByRules(words)
if len(filteredLanguages) == 1 {
languageDetectedByFilter := filteredLanguages[0]
for i := range values {
if values[i].Language() == languageDetectedByFilter {
values[i] = newConfidenceValue(languageDetectedByFilter, 1)
break
}
}
sort.Sort(values)
return values
}
characterCount := 0
for _, word := range words {
characterCount += utf8.RuneCountInString(word)
}
if detector.isLowAccuracyModeEnabled && characterCount < 3 {
sort.Sort(values)
return values
}
var ngramLengthRange []int
if characterCount >= 120 || detector.isLowAccuracyModeEnabled {
ngramLengthRange = []int{3}
} else {
ngramLengthRange = []int{1, 2, 3, 4, 5}
}
probabilityChannel := make(chan map[Language]float64, len(ngramLengthRange))
unigramCountChannel := make(chan map[Language]uint32, 1)
for _, ngramLength := range ngramLengthRange {
go detector.lookUpLanguageModels(
words,
ngramLength,
filteredLanguages,
probabilityChannel,
unigramCountChannel,
)
}
var unigramCounts map[Language]uint32
if slices.Contains(ngramLengthRange, 1) {
unigramCounts = <-unigramCountChannel
}
probabilityMaps := getProbabilityMaps(probabilityChannel, ngramLengthRange)
summedUpProbabilities := sumUpProbabilities(probabilityMaps, unigramCounts, filteredLanguages)
if len(summedUpProbabilities) == 0 {
sort.Sort(values)
return values
}
return detector.computeConfidenceValues(values, probabilityMaps, summedUpProbabilities)
}
func (detector languageDetector) ComputeLanguageConfidence(text string, language Language) float64 {
confidenceValues := detector.ComputeLanguageConfidenceValues(text)
for _, confidenceValue := range confidenceValues {
if confidenceValue.Language() == language {
return confidenceValue.Value()
}
}
return 0
}
func getProbabilityMaps(
probabilityChannel <-chan map[Language]float64,
ngramLengthRange []int,
) []map[Language]float64 {
probabilityMaps := make([]map[Language]float64, len(ngramLengthRange))
for i := range ngramLengthRange {
probabilityMaps[i] = <-probabilityChannel
}
return probabilityMaps
}
func splitTextIntoWords(text string) []string {
return letters.FindAllString(strings.ToLower(text), -1)
}
func (detector languageDetector) detectLanguageWithRules(words []string) Language {
totalLanguageCounts := make(map[Language]uint32)
halfWordCount := float64(len(words)) * 0.5
for _, word := range words {
wordLanguageCounts := make(map[Language]uint32)
for _, chr := range []rune(word) {
char := string(chr)
isMatch := false
for alphabet, language := range detector.oneLanguageAlphabets {
if alphabet.matches(char) {
wordLanguageCounts[language]++
isMatch = true
break
}
}
if !isMatch {
if han.matches(char) {
wordLanguageCounts[Chinese]++
} else if japaneseCharacterSet.MatchString(char) {
wordLanguageCounts[Japanese]++
} else if latin.matches(char) || cyrillic.matches(char) || devanagari.matches(char) {
for _, language := range detector.languagesWithUniqueCharacters {
if strings.Contains(language.uniqueCharacters(), char) {
wordLanguageCounts[language]++
}
}
}
}
}
if len(wordLanguageCounts) == 0 {
totalLanguageCounts[Unknown]++
} else if len(wordLanguageCounts) == 1 {
var language Language
for key := range wordLanguageCounts {
language = key
}
if slices.Contains(detector.languages, language) {
totalLanguageCounts[language]++
} else {
totalLanguageCounts[Unknown]++
}
} else {
_, containsChinese := wordLanguageCounts[Chinese]
_, containsJapanese := wordLanguageCounts[Japanese]
if containsChinese && containsJapanese {
totalLanguageCounts[Japanese]++
} else {
keys := maps.Keys(wordLanguageCounts)
sort.Slice(keys, func(i, j int) bool {
return wordLanguageCounts[keys[i]] > wordLanguageCounts[keys[j]]
})
mostFrequentLanguage := keys[0]
mostFrequentLanguageCount := wordLanguageCounts[keys[0]]
secondMostFrequentLanguageCount := wordLanguageCounts[keys[1]]
if mostFrequentLanguageCount > secondMostFrequentLanguageCount &&
slices.Contains(detector.languages, mostFrequentLanguage) {
totalLanguageCounts[mostFrequentLanguage]++
} else {
totalLanguageCounts[Unknown]++
}
}
}
}
var unknownLanguageCount float64 = 0
if value, exists := totalLanguageCounts[Unknown]; exists {
unknownLanguageCount = float64(value)
}
if unknownLanguageCount < halfWordCount {
delete(totalLanguageCounts, Unknown)
}
if len(totalLanguageCounts) == 0 {
return Unknown
}
if len(totalLanguageCounts) == 1 {
for language := range totalLanguageCounts {
return language
}
}
if len(totalLanguageCounts) == 2 {
_, containsChinese := totalLanguageCounts[Chinese]
_, containsJapanese := totalLanguageCounts[Japanese]
if containsChinese && containsJapanese {
return Japanese
}
}
sortedLanguages := maps.Keys(totalLanguageCounts)
sort.Slice(sortedLanguages, func(i, j int) bool {
return totalLanguageCounts[sortedLanguages[i]] > totalLanguageCounts[sortedLanguages[j]]
})
mostFrequentLanguage := sortedLanguages[0]
mostFrequentLanguageCount := totalLanguageCounts[sortedLanguages[0]]
secondMostFrequentLanguageCount := totalLanguageCounts[sortedLanguages[1]]
if mostFrequentLanguageCount == secondMostFrequentLanguageCount {
return Unknown
}
return mostFrequentLanguage
}
func (detector languageDetector) filterLanguagesByRules(words []string) []Language {
detectedAlphabets := make(map[alphabet]uint32)
halfWordCount := float64(len(words)) * 0.5
for _, word := range words {
for _, alphabet := range allAlphabets() {
if alphabet.matches(word) {
detectedAlphabets[alphabet]++
break
}
}
}
if len(detectedAlphabets) == 0 {
return detector.languages
}
if len(detectedAlphabets) > 1 {
distinctAlphabetCounts := make(map[uint32]struct{})
for _, count := range detectedAlphabets {
distinctAlphabetCounts[count] = struct{}{}
}
if len(distinctAlphabetCounts) == 1 {
return detector.languages
}
}
sortedAlphabets := maps.Keys(detectedAlphabets)
sort.Slice(sortedAlphabets, func(i, j int) bool {
return detectedAlphabets[sortedAlphabets[i]] > detectedAlphabets[sortedAlphabets[j]]
})
mostFrequentAlphabet := sortedAlphabets[0]
var filteredLanguages []Language
for _, language := range detector.languages {
if slices.Contains(language.alphabets(), mostFrequentAlphabet) {
filteredLanguages = append(filteredLanguages, language)
}
}
languageCounts := make(map[Language]uint32)
for characters, languages := range charsToLanguagesMapping {
var relevantLanguages []Language
for _, language := range languages {
if slices.Contains(filteredLanguages, language) {
relevantLanguages = append(relevantLanguages, language)
}
}
for _, word := range words {
for _, character := range []rune(characters) {
if strings.ContainsRune(word, character) {
for _, language := range relevantLanguages {
languageCounts[language]++
}
}
}
}
}
var languageSubset []Language
for language, count := range languageCounts {
if float64(count) >= halfWordCount {
languageSubset = append(languageSubset, language)
}
}
if len(languageSubset) > 0 {
return languageSubset
}
return filteredLanguages
}
func (detector languageDetector) lookUpLanguageModels(
words []string,
ngramLength int,
filteredLanguages []Language,
probabilityChannel chan<- map[Language]float64,
unigramCountChannel chan<- map[Language]uint32,
) {
ngramModel := newTestDataLanguageModel(words, ngramLength)
probabilities := detector.computeLanguageProbabilities(ngramModel, filteredLanguages)
probabilityChannel <- probabilities
if ngramLength == 1 {
intersectedLanguages := make([]Language, len(filteredLanguages))
if len(probabilities) > 0 {
for i, language := range filteredLanguages {
if _, exists := probabilities[language]; exists {
intersectedLanguages[i] = language
}
}
} else {
copy(intersectedLanguages, filteredLanguages)
}
detector.countUnigrams(unigramCountChannel, ngramModel, intersectedLanguages)
}
}
func (detector languageDetector) computeLanguageProbabilities(
ngramModel testDataLanguageModel,
filteredLanguages []Language,
) map[Language]float64 {
probabilities := make(map[Language]float64)
for _, language := range filteredLanguages {
sum := detector.computeSumOfNgramProbabilities(language, ngramModel)
if sum < 0 {
probabilities[language] = sum
}
}
return probabilities
}
func (detector languageDetector) computeConfidenceValues(
confidenceValues confidenceValueSlice,
probabilityMaps []map[Language]float64,
probabilities map[Language]decimal.Decimal,
) []ConfidenceValue {
denominator := decimal.Zero
for _, probability := range probabilities {
denominator = denominator.Add(probability)
}
// If the denominator is still zero, the exponent of the summed
// log probabilities is too large to be computed for very long input strings.
// So we simply set the probability of the most likely language to 1.0 and
// leave the other languages at 0.0.
if denominator.IsZero() {
// For very long inputs, only trigrams are used, so we safely access them at index 0.
probabilityMap := probabilityMaps[0]
var languages []Language
for language := range probabilityMap {
languages = append(languages, language)
}
sort.Slice(languages, func(i, j int) bool {
return probabilityMap[languages[i]] > probabilityMap[languages[j]]
})
mostLikelyLanguage := languages[0]
for i := range confidenceValues {
if confidenceValues[i].Language() == mostLikelyLanguage {
confidenceValues[i] = newConfidenceValue(mostLikelyLanguage, 1.0)
break
}
}
} else {
for language, probability := range probabilities {
for i := range confidenceValues {
if confidenceValues[i].Language() == language {
// apply softmax function
normalizedProbability := probability.Div(denominator)
f, _ := normalizedProbability.Float64()
confidenceValues[i] = newConfidenceValue(language, f)
break
}
}
}
}
sort.Sort(confidenceValues)
return confidenceValues
}
func (detector languageDetector) computeSumOfNgramProbabilities(language Language, ngramModel testDataLanguageModel) float64 {
sum := 0.0
for _, ngrams := range ngramModel.ngrams {
for _, n := range ngrams {
probability := detector.lookUpNgramProbability(language, n)
if probability > 0 {
sum += math.Log(probability)
break
}
}
}
return sum
}
func (detector languageDetector) lookUpNgramProbability(language Language, ngrm ngram) float64 {
ngramLength := utf8.RuneCountInString(ngrm.value)
var models map[string]float64
switch ngramLength {
case 5:
models = loadLanguageModels(detector.fivegramLanguageModels, language, ngramLength)
case 4:
models = loadLanguageModels(detector.quadrigramLanguageModels, language, ngramLength)
case 3:
models = loadLanguageModels(detector.trigramLanguageModels, language, ngramLength)
case 2:
models = loadLanguageModels(detector.bigramLanguageModels, language, ngramLength)
case 1:
models = loadLanguageModels(detector.unigramLanguageModels, language, ngramLength)
case 0:
panic("zerogram detected")
default:
panic(fmt.Sprintf("unsupported ngram length detected: %v", ngramLength))
}
if frequency, exists := models[ngrm.value]; exists {
return frequency
}
return 0
}
func (detector languageDetector) countUnigrams(
unigramCountChannel chan<- map[Language]uint32,
unigramModel testDataLanguageModel,
filteredLanguages []Language,
) {
unigramCounts := make(map[Language]uint32)
for _, language := range filteredLanguages {
for _, unigrams := range unigramModel.ngrams {
if detector.lookUpNgramProbability(language, unigrams[0]) > 0 {
unigramCounts[language]++
}
}
}
unigramCountChannel <- unigramCounts
}
func sumUpProbabilities(
probabilityMaps []map[Language]float64,
unigramCounts map[Language]uint32,
filteredLanguages []Language,
) map[Language]decimal.Decimal {
summedUpProbabilities := make(map[Language]decimal.Decimal)
hasUnigramCounts := unigramCounts != nil
for _, language := range filteredLanguages {
sum := 0.0
for _, probabilities := range probabilityMaps {
if probability, exists := probabilities[language]; exists {
sum += probability
}
}
if hasUnigramCounts {
if unigramCount, exists := unigramCounts[language]; exists {
sum /= float64(unigramCount)
}
}
if sum != 0 {
summedUpProbabilities[language] = computeExponent(sum)
}
}
return summedUpProbabilities
}
func computeExponent(value float64) decimal.Decimal {
exponent := math.Exp(value)
if exponent > 0 {
return decimal.NewFromFloat(exponent)
}
// exp(x) = exp(x / y) ** y
d := decimal.NewFromFloat(value / 1000)
e, _ := d.ExpTaylor(25)
p := e.Pow(decimal.NewFromInt(1000))
return p
}
func loadLanguageModels(
languageModels *sync.Map,
language Language,
ngramLength int,
) map[string]float64 {
existingModels, exists := languageModels.Load(language)
if exists {
return existingModels.(map[string]float64)
}
protobufData := loadProtobufData(language, ngramLength)
if protobufData == nil {
return nil
}
model := serialization.SerializableLanguageModel{}
if err := proto.Unmarshal(protobufData, &model); err != nil {
panic(err.Error())
}
modelMap := make(map[string]float64, model.TotalNgrams)
for _, ngramSet := range model.NgramSets {
for _, ngrm := range ngramSet.Ngrams {
modelMap[ngrm] = ngramSet.Probability
}
}
languageModels.Store(language, modelMap)
return modelMap
}
func loadProtobufData(language Language, ngramLength int) []byte {
ngramName := getNgramNameByLength(ngramLength)
isoCode := strings.ToLower(language.IsoCode639_1().String())
zipFilePath := fmt.Sprintf("language-models/%s/%ss.pb.bin.zip", isoCode, ngramName)
zipFileBytes, err := languageModels.ReadFile(zipFilePath)
if err != nil {
return nil
}
zipFile, _ := zip.NewReader(bytes.NewReader(zipFileBytes), int64(len(zipFileBytes)))
protobufFile, _ := zipFile.File[0].Open()
defer protobufFile.Close()
protobufFileContent, _ := io.ReadAll(protobufFile)
return protobufFileContent
}
func collectLanguagesWithUniqueCharacters(languages []Language) []Language {
var languagesWithUniqueCharacters []Language
for _, language := range languages {
if len(language.uniqueCharacters()) > 0 {
languagesWithUniqueCharacters = append(languagesWithUniqueCharacters, language)
}
}
return languagesWithUniqueCharacters
}
func collectOneLanguageAlphabets(languages []Language) map[alphabet]Language {
oneLanguageAlphabets := make(map[alphabet]Language)
for alphabet, language := range allAlphabetsSupportingSingleLanguage() {
if slices.Contains(languages, language) {
oneLanguageAlphabets[alphabet] = language
}
}
return oneLanguageAlphabets
}
func mergeAdjacentResults(results []detectionResult, mergeableResultIndices []int) []detectionResult {
sort.Sort(sort.Reverse(sort.IntSlice(mergeableResultIndices)))
for _, i := range mergeableResultIndices {
if i == 0 {
results[i+1].startIndex = results[i].startIndex
} else {
results[i-1].endIndex = results[i].endIndex
}
results = slices.Delete(results, i, i+1)
if len(results) == 1 {
break
}
}
return results
}