-
Notifications
You must be signed in to change notification settings - Fork 597
/
Copy pathmetafile.yml
110 lines (104 loc) · 3.8 KB
/
metafile.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
Collections:
- Name: SiameseRPN++
Metadata:
Training Data: MSCOCO, ImageNet DET, ImageNet VID
Training Techniques:
- SGD with Momentum
Training Resources: 8x V100 GPUs
Architecture:
- ResNet
Paper:
URL: https://arxiv.org/abs/1812.11703
Title: SiamRPN++ Evolution of Siamese Visual Tracking with Very Deep Networks
README: configs/sot/siamese_rpn/README.md
Models:
- Name: siamese_rpn_r50_20e_lasot
In Collection: SiameseRPN++
Config: configs/sot/siamese_rpn/siamese_rpn_r50_20e_lasot.py
Metadata:
Training Data: MSCOCO, ImageNet DET, ImageNet VID
Training Memory (GB): 7.54
Epochs: 20
Results:
- Task: Single Object Tracking
Dataset: LaSOT
Metrics:
Success: 50.4
Norm precision: 59.6
Precision: 49.7
Weights: https://download.openmmlab.com/mmtracking/sot/siamese_rpn/siamese_rpn_r50_1x_lasot/siamese_rpn_r50_20e_lasot_20220420_181845-dd0f151e.pth
- Name: siamese_rpn_r50_20e_uav123
In Collection: SiameseRPN++
Config: configs/sot/siamese_rpn/siamese_rpn_r50_20e_uav123.py
Metadata:
Training Data: MSCOCO, ImageNet DET, ImageNet VID
Training Memory (GB): 7.54
Epochs: 20
Results:
- Task: Single Object Tracking
Dataset: UAV123
Metrics:
Success: 60
Norm precision: 77.3
Precision: 80.3
Weights: https://download.openmmlab.com/mmtracking/sot/siamese_rpn/siamese_rpn_r50_1x_uav123/siamese_rpn_r50_20e_uav123_20220420_181845-dc2d4831.pth
- Name: siamese_rpn_r50_20e_trackingnet
In Collection: SiameseRPN++
Config: configs/sot/siamese_rpn/siamese_rpn_r50_20e_trackingnet.py
Metadata:
Training Data: MSCOCO, ImageNet DET, ImageNet VID
Training Memory (GB): 7.54
Epochs: 20
Results:
- Task: Single Object Tracking
Dataset: TrackingNet
Metrics:
Success: 68.8
Norm precision: 75.9
Precision: 63.2
Weights: https://download.openmmlab.com/mmtracking/sot/siamese_rpn/siamese_rpn_r50_1x_lasot/siamese_rpn_r50_20e_lasot_20220420_181845-dd0f151e.pth
- Name: siamese_rpn_r50_20e_otb100
In Collection: SiameseRPN++
Config: configs/sot/siamese_rpn/siamese_rpn_r50_20e_otb100.py
Metadata:
Training Data: MSCOCO, ImageNet DET, ImageNet VID
Training Memory (GB): _
Epochs: 20
Results:
- Task: Single Object Tracking
Dataset: OTB100
Metrics:
Success: 64.9
Norm precision: 82.4
Precision: 86.3
Weights: https://download.openmmlab.com/mmtracking/sot/siamese_rpn/siamese_rpn_r50_1x_otb100/siamese_rpn_r50_20e_otb100_20220421_144232-6b8f1730.pth
- Name: siamese_rpn_r50_20e_vot2018
In Collection: SiameseRPN++
Config: configs/sot/siamese_rpn/siamese_rpn_r50_20e_vot2018.py
Metadata:
Training Data: MSCOCO, ImageNet DET, ImageNet VID
Training Memory (GB): _
Epochs: 20
Results:
- Task: Single Object Tracking
Dataset: VOT2018
Metrics:
EAO: 0.348
Accuracy: 0.588
Robustness: 0.295
Weights: https://download.openmmlab.com/mmtracking/sot/siamese_rpn/siamese_rpn_r50_1x_vot2018/siamese_rpn_r50_20e_vot2018_20220420_181845-1111f25e.pth
- Name: siamese_rpn_r50_fp16_20e_lasot
In Collection: SiameseRPN++
Config: configs/sot/siamese_rpn/siamese_rpn_r50_fp16_20e_lasot.py
Metadata:
Training Data: MSCOCO, ImageNet DET, ImageNet VID
Training Memory (GB): 7.54
Epochs: 20
Results:
- Task: Single Object Tracking
Dataset: LaSOT
Metrics:
Success: 50.4
Norm precision: 59.6
Precision: 49.2
Weights: https://download.openmmlab.com/mmtracking/fp16/siamese_rpn_r50_fp16_20e_lasot_20220422_181501-ce30fdfd.pth