-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
dpt_head.py
294 lines (260 loc) · 10.1 KB
/
dpt_head.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
# Copyright (c) OpenMMLab. All rights reserved.
import math
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, Linear, build_activation_layer
from mmengine.model import BaseModule
from mmseg.registry import MODELS
from ..utils import resize
from .decode_head import BaseDecodeHead
class ReassembleBlocks(BaseModule):
"""ViTPostProcessBlock, process cls_token in ViT backbone output and
rearrange the feature vector to feature map.
Args:
in_channels (int): ViT feature channels. Default: 768.
out_channels (List): output channels of each stage.
Default: [96, 192, 384, 768].
readout_type (str): Type of readout operation. Default: 'ignore'.
patch_size (int): The patch size. Default: 16.
init_cfg (dict, optional): Initialization config dict. Default: None.
"""
def __init__(self,
in_channels=768,
out_channels=[96, 192, 384, 768],
readout_type='ignore',
patch_size=16,
init_cfg=None):
super().__init__(init_cfg)
assert readout_type in ['ignore', 'add', 'project']
self.readout_type = readout_type
self.patch_size = patch_size
self.projects = nn.ModuleList([
ConvModule(
in_channels=in_channels,
out_channels=out_channel,
kernel_size=1,
act_cfg=None,
) for out_channel in out_channels
])
self.resize_layers = nn.ModuleList([
nn.ConvTranspose2d(
in_channels=out_channels[0],
out_channels=out_channels[0],
kernel_size=4,
stride=4,
padding=0),
nn.ConvTranspose2d(
in_channels=out_channels[1],
out_channels=out_channels[1],
kernel_size=2,
stride=2,
padding=0),
nn.Identity(),
nn.Conv2d(
in_channels=out_channels[3],
out_channels=out_channels[3],
kernel_size=3,
stride=2,
padding=1)
])
if self.readout_type == 'project':
self.readout_projects = nn.ModuleList()
for _ in range(len(self.projects)):
self.readout_projects.append(
nn.Sequential(
Linear(2 * in_channels, in_channels),
build_activation_layer(dict(type='GELU'))))
def forward(self, inputs):
assert isinstance(inputs, list)
out = []
for i, x in enumerate(inputs):
assert len(x) == 2
x, cls_token = x[0], x[1]
feature_shape = x.shape
if self.readout_type == 'project':
x = x.flatten(2).permute((0, 2, 1))
readout = cls_token.unsqueeze(1).expand_as(x)
x = self.readout_projects[i](torch.cat((x, readout), -1))
x = x.permute(0, 2, 1).reshape(feature_shape)
elif self.readout_type == 'add':
x = x.flatten(2) + cls_token.unsqueeze(-1)
x = x.reshape(feature_shape)
else:
pass
x = self.projects[i](x)
x = self.resize_layers[i](x)
out.append(x)
return out
class PreActResidualConvUnit(BaseModule):
"""ResidualConvUnit, pre-activate residual unit.
Args:
in_channels (int): number of channels in the input feature map.
act_cfg (dict): dictionary to construct and config activation layer.
norm_cfg (dict): dictionary to construct and config norm layer.
stride (int): stride of the first block. Default: 1
dilation (int): dilation rate for convs layers. Default: 1.
init_cfg (dict, optional): Initialization config dict. Default: None.
"""
def __init__(self,
in_channels,
act_cfg,
norm_cfg,
stride=1,
dilation=1,
init_cfg=None):
super().__init__(init_cfg)
self.conv1 = ConvModule(
in_channels,
in_channels,
3,
stride=stride,
padding=dilation,
dilation=dilation,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
bias=False,
order=('act', 'conv', 'norm'))
self.conv2 = ConvModule(
in_channels,
in_channels,
3,
padding=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
bias=False,
order=('act', 'conv', 'norm'))
def forward(self, inputs):
inputs_ = inputs.clone()
x = self.conv1(inputs)
x = self.conv2(x)
return x + inputs_
class FeatureFusionBlock(BaseModule):
"""FeatureFusionBlock, merge feature map from different stages.
Args:
in_channels (int): Input channels.
act_cfg (dict): The activation config for ResidualConvUnit.
norm_cfg (dict): Config dict for normalization layer.
expand (bool): Whether expand the channels in post process block.
Default: False.
align_corners (bool): align_corner setting for bilinear upsample.
Default: True.
init_cfg (dict, optional): Initialization config dict. Default: None.
"""
def __init__(self,
in_channels,
act_cfg,
norm_cfg,
expand=False,
align_corners=True,
init_cfg=None):
super().__init__(init_cfg)
self.in_channels = in_channels
self.expand = expand
self.align_corners = align_corners
self.out_channels = in_channels
if self.expand:
self.out_channels = in_channels // 2
self.project = ConvModule(
self.in_channels,
self.out_channels,
kernel_size=1,
act_cfg=None,
bias=True)
self.res_conv_unit1 = PreActResidualConvUnit(
in_channels=self.in_channels, act_cfg=act_cfg, norm_cfg=norm_cfg)
self.res_conv_unit2 = PreActResidualConvUnit(
in_channels=self.in_channels, act_cfg=act_cfg, norm_cfg=norm_cfg)
def forward(self, *inputs):
x = inputs[0]
if len(inputs) == 2:
if x.shape != inputs[1].shape:
res = resize(
inputs[1],
size=(x.shape[2], x.shape[3]),
mode='bilinear',
align_corners=False)
else:
res = inputs[1]
x = x + self.res_conv_unit1(res)
x = self.res_conv_unit2(x)
x = resize(
x,
scale_factor=2,
mode='bilinear',
align_corners=self.align_corners)
x = self.project(x)
return x
@MODELS.register_module()
class DPTHead(BaseDecodeHead):
"""Vision Transformers for Dense Prediction.
This head is implemented of `DPT <https://arxiv.org/abs/2103.13413>`_.
Args:
embed_dims (int): The embed dimension of the ViT backbone.
Default: 768.
post_process_channels (List): Out channels of post process conv
layers. Default: [96, 192, 384, 768].
readout_type (str): Type of readout operation. Default: 'ignore'.
patch_size (int): The patch size. Default: 16.
expand_channels (bool): Whether expand the channels in post process
block. Default: False.
act_cfg (dict): The activation config for residual conv unit.
Default dict(type='ReLU').
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
"""
def __init__(self,
embed_dims=768,
post_process_channels=[96, 192, 384, 768],
readout_type='ignore',
patch_size=16,
expand_channels=False,
act_cfg=dict(type='ReLU'),
norm_cfg=dict(type='BN'),
**kwargs):
super().__init__(**kwargs)
self.in_channels = self.in_channels
self.expand_channels = expand_channels
self.reassemble_blocks = ReassembleBlocks(embed_dims,
post_process_channels,
readout_type, patch_size)
self.post_process_channels = [
channel * math.pow(2, i) if expand_channels else channel
for i, channel in enumerate(post_process_channels)
]
self.convs = nn.ModuleList()
for channel in self.post_process_channels:
self.convs.append(
ConvModule(
channel,
self.channels,
kernel_size=3,
padding=1,
act_cfg=None,
bias=False))
self.fusion_blocks = nn.ModuleList()
for _ in range(len(self.convs)):
self.fusion_blocks.append(
FeatureFusionBlock(self.channels, act_cfg, norm_cfg))
self.fusion_blocks[0].res_conv_unit1 = None
self.project = ConvModule(
self.channels,
self.channels,
kernel_size=3,
padding=1,
norm_cfg=norm_cfg)
self.num_fusion_blocks = len(self.fusion_blocks)
self.num_reassemble_blocks = len(self.reassemble_blocks.resize_layers)
self.num_post_process_channels = len(self.post_process_channels)
assert self.num_fusion_blocks == self.num_reassemble_blocks
assert self.num_reassemble_blocks == self.num_post_process_channels
def forward(self, inputs):
assert len(inputs) == self.num_reassemble_blocks
x = self._transform_inputs(inputs)
x = self.reassemble_blocks(x)
x = [self.convs[i](feature) for i, feature in enumerate(x)]
out = self.fusion_blocks[0](x[-1])
for i in range(1, len(self.fusion_blocks)):
out = self.fusion_blocks[i](out, x[-(i + 1)])
out = self.project(out)
out = self.cls_seg(out)
return out