-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathindex.html
115 lines (88 loc) · 4.6 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
<!DOCTYPE html>
<html>
<link rel="shortcut icon" href="favicon.ico">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.7.0/css/font-awesome.min.css">
<meta name="author" content="sunprinceS" >
<meta property="og:image" content="joy.png"/>
<!--<meta property="og:image" content="http://www.themainstreetmouse.com/wp-content/uploads/2015/06/inhinh657551-613x345-150x150.jpg"/>-->
<title>Machine Learning (2017, Fall)</title>
<xmp theme="cerulean" style="display:none;">
# Assignment 2 - Income Prediction
Let's do the BINARY CLASSIFICATION !!!
<hr>
### FAQ
* Q1.請問我可以在github上傳自己的weight並在shell script中使用嗎?
<br>可以,要是同學擔心自己在hw2_best.sh中使用的方法,training的時間可能會超過時限,可以上傳weight,我們到時候clone下來只要確定同學的code可以infer就好。
* Q2.請問Report.pdf名稱與HW1規定不一致,是大小寫都可以用嗎?
<br>請同學依照HW2中投影片的名稱繳交。
<hr>
### Announcement
* Kaggle Deadline: 2017/10/26 11:59 P.M. (GMT+8)
* Github Deadline: 2017/10/27 11:59 P.M. (GMT+8)
* TA會於10/20釋出範例程式碼,亦為超過 Kaggle simple baseline 的加分截止期限
* (10/13) 整理同學課堂問題,請見最上面的FAQ
* (10/17) 新增hw2_best.sh可以使用的套件,請見下方Rules
* (10/20) 上傳samplecode,請見Requirements裡的連結,或是Link的Github連結。
* (10/27) 上傳answer,請見Dataset部分
<hr>
### Link
* 投影片連結 <a href="https://docs.google.com/presentation/d/1qMxjDGkS6fVY0LtMh_VJFhl9QNk0GtiEJegxw3Eq3Ok/edit?usp=sharing" target="_blank"><i class="fa fa-slideshare"></i></a>
* Kaggle 連結 <a href="https://www.kaggle.com/t/5808de7e75cf4e509d28d014a9f36f7d" target="_blank"><i class="fa fa-trophy"></i></a>
* 遲交表單 <a href="https://goo.gl/forms/DZ2Gz9Q5Fz4ucchP2" target="_blank"><i class="fa fa-file-text"></i></a>
* 小老師申請表單 <a href="https://goo.gl/forms/BcRm6cQtKmaARcIB3" target="_blank"><i class="fa fa-file-text"></i></a>
* Github <a href="https://github.com/ntumlta/2017fall-ml-hw2/tree/master" target="_blank"><i class="fa fa-github"></i></a>
* TA Hour Slide <a href="https://docs.google.com/presentation/d/1nOJkDRXDdORwkwibzX55w7jGOyB-rPjCOeRpwaZ82as/edit#slide=id.g1d460c2d77_0_60" target="_blank"><i class="fa fa-slideshare"></i></a>
<hr>
### Requirements
In this assignment, you are asked to implement the following two models.
#### <a href="./LogisticRegression.html" target="_blank">1. Logistic Regression</a>
Handcrafted Gradient Descent Optimizer to solve logistic regression.
#### <a href="./ProbabilisticGenerativeModel.html" target="_blank">2. Probabilstic Generative Model</a>
Implement probabilstic generative model to do binary classification.
<hr>
### Dataset : ADULT Dataset
#### Raw Data
* [train.csv](./raw_data/train.csv)
* [test.csv](./raw_data/test.csv)
* <a href="https://archive.ics.uci.edu/ml/datasets/Adult" target="_blank">Ref</a>
#### Feature
* [X_train](./feature/X_train)
+ 106 dims
+ one-hot encoding
* [Y_train](./feature/Y_train)
+ label = 0 表示小於等於50K, label = 1 表示大於50K
* [X_test](./feature/X_test)
#### Ans
* [Answer]
<hr>
### Rules
* Basic : No extra dataset.
* hw2_logistic.sh, hw2_generative.sh : Only toolkits below are allowed to use.
+ Python 3.5+
+ Numpy
+ Pandas
+ Python Standard Lib
* hw2_best.sh : 除了上述套件,可以使用以下套件,若有其他想用的請再來信詢問TA是否可以使用。
+ Tensorflow 1.3
+ Keras 2.0.8
+ Pytorch 0.2.0
+ Scikit-learn 0.19.0
+ XGBoost 0.6
+ h5py 2.7.0
</xmp>
</xmp> <script src="strapdown.js"></script> </html>
<footer>
<center><a href="./index.html"><i class="fa fa-home"></i></a></center>
<center><i class="fa fa-github"></i></a> Posted by: <a href="https://github.com/ntumlta/" target="_blank">ntumlta</a> </center>
<center><i class="fa fa-envelope"></i> Contact information: <a href="mailto:"> [email protected] </a>.</center>
<center><i class="fa fa-mortar-board"></i> Course information: <a href="http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML17_2.html", target="_blank">Machine Learning (2017, Fall) @ National Taiwan University</a>.</center>
</footer>
<script>
(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-59748795-2', 'auto');
ga('send', 'pageview');
</script>
</html>