-
Notifications
You must be signed in to change notification settings - Fork 4
/
thttpd.8
637 lines (636 loc) · 25.6 KB
/
thttpd.8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
.TH thttpd 8 "29 February 2000"
.SH NAME
thttpd - tiny/turbo/throttling HTTP server
.SH SYNOPSIS
.B thttpd
.RB [ -C
.IR configfile ]
.RB [ -p
.IR port ]
.RB [ -d
.IR dir ]
.RB [ -dd
.IR data_dir ]
.RB [ -r | -nor ]
.RB [ -s | -nos ]
.RB [ -v | -nov ]
.RB [ -g | -nog ]
.RB [ -u
.IR user ]
.RB [ -c
.IR cgipat ]
.RB [ -t
.IR throttles ]
.RB [ -h
.IR host ]
.RB [ -l
.IR logfile ]
.RB [ -i
.IR pidfile ]
.RB [ -T
.IR charset ]
.RB [ -P
.IR P3P ]
.RB [ -M
.IR maxage ]
.RB [ -V ]
.RB [ -D ]
.RB [ -F ]
.RB [ -B
.IR size ]
.RB [ -S ]
.SH DESCRIPTION
.PP
.I thttpd
is a simple, small, fast, and secure HTTP server.
It doesn't have a lot of special features, but it suffices for most uses of
the web, it's about as fast as the best full-featured servers (Apache, NCSA,
Netscape),
and it has one extremely useful feature (URL-traffic-based throttling)
that no other server currently has.
.SH OPTIONS
.TP
.B -C
Specifies a config-file to read.
All options can be set either by command-line flags or in the config file.
See below for details.
.TP
.B -p
Specifies an alternate port number to listen on.
The default is 80.
The config-file option name for this flag is "port",
and the config.h option is DEFAULT_PORT.
.TP
.B -d
Specifies a directory to chdir() to at startup.
This is merely a convenience - you could just as easily
do a cd in the shell script that invokes the program.
The config-file option name for this flag is "dir",
and the config.h options are WEBDIR, USE_USER_DIR.
.TP
.B -r
Do a chroot() at initialization time, restricting file access
to the program's current directory.
If -r is the compiled-in default, then -nor disables it.
See below for details.
The config-file option names for this flag are "chroot" and "nochroot",
and the config.h option is ALWAYS_CHROOT.
.TP
.B -dd
Specifies a directory to chdir() to after chrooting.
If you're not chrooting, you might as well do a single chdir() with
the -d flag.
If you are chrooting, this lets you put the web files in a subdirectory
of the chroot tree, instead of in the top level mixed in with the
chroot files.
The config-file option name for this flag is "data_dir".
.TP
.B -nos
Don't do explicit symbolic link checking.
Normally, thttpd explicitly expands any symbolic links in filenames,
to check that the resulting path stays within the original document tree.
If you want to turn off this check and save some CPU time, you can use
the -nos flag, however this is not recommended.
Note, though, that if you are using the chroot option, the symlink
checking is unnecessary and is turned off, so the safe way to save
those CPU cycles is to use chroot.
The config-file option names for this flag are "symlinkcheck" and "nosymlinkcheck".
.TP
.B -v
Do el-cheapo virtual hosting.
If -v is the compiled-in default, then -nov disables it.
See below for details.
The config-file option names for this flag are "vhost" and "novhost",
and the config.h option is ALWAYS_VHOST.
.TP
.B -g
Use a global passwd file.
This means that every file in the entire document tree is protected by
the single .htpasswd file at the top of the tree.
Otherwise the semantics of the .htpasswd file are the same.
If this option is set but there is no .htpasswd file in
the top-level directory, then thttpd proceeds as if the option was
not set - first looking for a local .htpasswd file, and if that doesn't
exist either then serving the file without any password.
If -g is the compiled-in default, then -nog disables it.
The config-file option names for this flag are "globalpasswd" and
"noglobalpasswd",
and the config.h option is ALWAYS_GLOBAL_PASSWD.
.TP
.B -u
Specifies what user to switch to after initialization when started as root.
The default is "nobody".
The config-file option name for this flag is "user",
and the config.h option is DEFAULT_USER.
.TP
.B -c
Specifies a wildcard pattern for CGI programs, for instance "**.cgi"
or "/cgi-bin/*".
See below for details.
The config-file option name for this flag is "cgipat",
and the config.h option is CGI_PATTERN.
.TP
.B -t
Specifies a file of throttle settings.
See below for details.
The config-file option name for this flag is "throttles".
.TP
.B -h
Specifies a hostname to bind to, for multihoming.
The default is to bind to all hostnames supported on the local machine.
See below for details.
The config-file option name for this flag is "host",
and the config.h option is SERVER_NAME.
.TP
.B -l
Specifies a file for logging.
If no -l argument is specified, thttpd logs via syslog().
If "-l /dev/null" is specified, thttpd doesn't log at all.
The config-file option name for this flag is "logfile".
.TP
.B -i
Specifies a file to write the process-id to.
If no file is specified, no process-id is written.
You can use this file to send signals to thttpd.
See below for details.
The config-file option name for this flag is "pidfile".
.TP
.B -T
Specifies the character set to use with text MIME types.
The default is UTF-8.
The config-file option name for this flag is "charset",
and the config.h option is DEFAULT_CHARSET.
.TP
.B -P
Specifies a P3P server privacy header to be returned with all responses.
See http://www.w3.org/P3P/ for details.
Thttpd doesn't do anything at all with the string except put it in the
P3P: response header.
The config-file option name for this flag is "p3p".
.TP
.B -M
Specifies the number of seconds to be used in a "Cache-Control: max-age"
header to be returned with all responses.
An equivalent "Expires" header is also generated.
The default is no Cache-Control or Expires headers,
which is just fine for most sites.
The config-file option name for this flag is "max_age".
.TP
.B -V
Shows the current version info.
.TP
.B -D
This was originally just a debugging flag, however it's worth mentioning
because one of the things it does is prevent thttpd from making itself
a background daemon.
Instead it runs in the foreground like a regular program.
This is necessary when you want to run thttpd wrapped in a little shell
script that restarts it if it exits.
.TP
.B -B
This option is only supported if the operating system supports SCTP.
The value provided limits the amount data is provided to the SCTP stack
in a send call. If it is set to a non-zero value, this amount is
limited by the minimum of this value and a quarter of the send buffer size.
If not set or set to zero, the default is a quarter of the send buffer size.
The config-file option name for this flag is "sctp_send_at_once_limit".
.TP
.B -F
This option is only supported if the operating system supports TCP
fast open.
TCP fast open is disabled by default. It can be enabled by setting the option.
The config-file option name for this flag is "fastopen".
.TP
.B -S
This option is only supported if the operating system supports SCTP.
Some platforms support the sending of large user message. On these platforms
every HTTP message is sent as a single SCTP user message. This can be tured off
by setting this option.
The config-file option name for this flag is "sctp_do_not_use_eeor".
.SH "CONFIG-FILE"
.PP
All the command-line options can also be set in a config file.
One advantage of using a config file is that the file can be changed,
and thttpd will pick up the changes with a restart.
.PP
The syntax of the config file is simple, a series of "option" or
"option=value" separated by whitespace.
The option names are listed above with their corresponding command-line flags.
.SH "CHROOT"
.PP
chroot() is a system call that restricts the program's view
of the filesystem to the current directory and directories
below it.
It becomes impossible for remote users to access any file
outside of the initial directory.
The restriction is inherited by child processes, so CGI programs get it too.
This is a very strong security measure, and is recommended.
The only downside is that only root can call chroot(), so this means
the program must be started as root.
However, the last thing it does during initialization is to
give up root access by becoming another user, so this is safe.
.PP
The program can also be compile-time configured to always
do a chroot(), without needing the -r flag.
.PP
Note that with some other web servers, such as NCSA httpd, setting
up a directory tree for use with chroot() is complicated, involving
creating a bunch of special directories and copying in various files.
With thttpd it's a lot easier, all you have to do is make sure
any shells, utilities, and config files used by your CGI programs and
scripts are available.
If you have CGI disabled, or if you make a policy that all CGI programs
must be written in a compiled language such as C and statically linked,
then you probably don't have to do any setup at all.
.PP
However, one thing you should do is tell syslogd about the chroot tree,
so that thttpd can still generate syslog messages.
Check your system's syslodg man page for how to do this.
In FreeBSD you would put something like this in /etc/rc.conf:
.nf
syslogd_flags="-l /usr/local/www/data/dev/log"
.fi
Substitute in your own chroot tree's pathname, of course.
Don't worry about creating the log socket, syslogd wants to do that itself.
(You may need to create the dev directory.)
In Linux the flag is -a instead of -l, and there may be other differences.
.PP
Relevant config.h option: ALWAYS_CHROOT.
.SH "CGI"
.PP
thttpd supports the CGI 1.1 spec.
.PP
In order for a CGI program to be run, its name must match the pattern
specified either at compile time or on the command line with the -c flag.
This is a simple shell-style filename pattern.
You can use * to match any string not including a slash,
or ** to match any string including slashes,
or ? to match any single character.
You can also use multiple such patterns separated by |.
The patterns get checked against the filename
part of the incoming URL.
Don't forget to quote any wildcard characters so that the shell doesn't
mess with them.
.PP
Restricting CGI programs to a single directory lets the site administrator
review them for security holes, and is strongly recommended.
If there are individual users that you trust, you can enable their
directories too.
.PP
If no CGI pattern is specified, neither here nor at compile time,
then CGI programs cannot be run at all.
If you want to disable CGI as a security measure, that's how you do it, just
comment out the patterns in the config file and don't run with the -c flag.
.PP
Note: the current working directory when a CGI program gets run is
the directory that the CGI program lives in.
This isn't in the CGI 1.1 spec, but it's what most other HTTP servers do.
.PP
Relevant config.h options: CGI_PATTERN, CGI_TIMELIMIT, CGI_NICE, CGI_PATH, CGI_LD_LIBRARY_PATH, CGIBINDIR.
.SH "BASIC AUTHENTICATION"
.PP
Basic Authentication is available as an option at compile time.
If enabled, it uses a password file in the directory to be protected,
called .htpasswd by default.
This file is formatted as the familiar colon-separated
username/encrypted-password pair, records delimited by newlines.
The protection does not carry over to subdirectories.
The utility program htpasswd(1) is included to help create and
modify .htpasswd files.
.PP
Relevant config.h option: AUTH_FILE
.SH "THROTTLING"
.PP
The throttle file lets you set maximum byte rates on URLs or URL groups.
You can optionally set a minimum rate too.
The format of the throttle file is very simple.
A # starts a comment, and the rest of the line is ignored.
Blank lines are ignored.
The rest of the lines should consist of a pattern, whitespace, and a number.
The pattern is a simple shell-style filename pattern, using ?/**/*, or
multiple such patterns separated by |.
.PP
The numbers in the file are byte rates, specified in units of bytes per second.
For comparison, a v.90 modem gives about 5000 B/s depending on compression,
a double-B-channel ISDN line about 12800 B/s, and a T1 line is about
150000 B/s.
If you want to set a minimum rate as well, use number-number.
.PP
Example:
.nf
# throttle file for www.acme.com
** 2000-100000 # limit total web usage to 2/3 of our T1,
# but never go below 2000 B/s
**.jpg|**.gif 50000 # limit images to 1/3 of our T1
**.mpg 20000 # and movies to even less
jef/** 20000 # jef's pages are too popular
.fi
.PP
Throttling is implemented by checking each incoming URL filename against all
of the patterns in the throttle file.
The server accumulates statistics on how much bandwidth each pattern
has accounted for recently (via a rolling average).
If a URL matches a pattern that has been exceeding its specified limit,
then the data returned is actually slowed down, with
pauses between each block.
If that's not possible (e.g. for CGI programs) or if the bandwidth has gotten
way larger than the limit, then the server returns a special code
saying 'try again later'.
.PP
The minimum rates are implemented similarly.
If too many people are trying to fetch something at the same time,
throttling may slow down each connection so much that it's not really
useable.
Furthermore, all those slow connections clog up the server, using
up file handles and connection slots.
Setting a minimum rate says that past a certain point you should not
even bother - the server returns the 'try again later" code and the
connection isn't even started.
.PP
There is no provision for setting a maximum connections/second throttle,
because throttling a request uses as much cpu as handling it, so
there would be no point.
There is also no provision for throttling the number of simultaneous
connections on a per-URL basis.
However you can control the overall number of connections for the whole
server very simply, by setting the operating system's per-process file
descriptor limit before starting thttpd.
Be sure to set the hard limit, not the soft limit.
.SH "MULTIHOMING"
.PP
Multihoming means using one machine to serve multiple hostnames.
For instance, if you're an internet provider and you want to let
all of your customers have customized web addresses, you might
have www.joe.acme.com, www.jane.acme.com, and your own www.acme.com,
all running on the same physical hardware.
This feature is also known as "virtual hosts".
There are three steps to setting this up.
.PP
One, make DNS entries for all of the hostnames.
The current way to do this, allowed by HTTP/1.1, is to use CNAME aliases,
like so:
.nf
www.acme.com IN A 192.100.66.1
www.joe.acme.com IN CNAME www.acme.com
www.jane.acme.com IN CNAME www.acme.com
.fi
However, this is incompatible with older HTTP/1.0 browsers.
If you want to stay compatible, there's a different way - use A records
instead, each with a different IP address, like so:
.nf
www.acme.com IN A 192.100.66.1
www.joe.acme.com IN A 192.100.66.200
www.jane.acme.com IN A 192.100.66.201
.fi
This is bad because it uses extra IP addresses, a somewhat scarce resource.
But if you want people with older browsers to be able to visit your
sites, you still have to do it this way.
.PP
Step two.
If you're using the modern CNAME method of multihoming, then you can
skip this step.
Otherwise, using the older multiple-IP-address method you
must set up IP aliases or multiple interfaces for the extra addresses.
You can use ifconfig(8)'s alias command to tell the machine to answer to
all of the different IP addresses.
Example:
.nf
ifconfig le0 www.acme.com
ifconfig le0 www.joe.acme.com alias
ifconfig le0 www.jane.acme.com alias
.fi
If your OS's version of ifconfig doesn't have an alias command, you're
probably out of luck (but see http://www.acme.com/software/thttpd/notes.html).
.PP
Third and last, you must set up thttpd to handle the multiple hosts.
The easiest way is with the -v flag, or the ALWAYS_VHOST config.h option.
This works with either CNAME multihosting or multiple-IP multihosting.
What it does is send each incoming request to a subdirectory based on the
hostname it's intended for.
All you have to do in order to set things up is to create those subdirectories
in the directory where thttpd will run.
With the example above, you'd do like so:
.nf
mkdir www.acme.com www.joe.acme.com www.jane.acme.com
.fi
If you're using old-style multiple-IP multihosting, you should also create
symbolic links from the numeric addresses to the names, like so:
.nf
ln -s www.acme.com 192.100.66.1
ln -s www.joe.acme.com 192.100.66.200
ln -s www.jane.acme.com 192.100.66.201
.fi
This lets the older HTTP/1.0 browsers find the right subdirectory.
.PP
There's an optional alternate step three if you're using multiple-IP
multihosting: run a separate thttpd process for each hostname, using
the -h flag to specify which one is which.
This gives you more flexibility, since you can run each of these processes
in separate directories, with different throttle files, etc.
Example:
.nf
thttpd -r -d /usr/www -h www.acme.com
thttpd -r -d /usr/www/joe -u joe -h www.joe.acme.com
thttpd -r -d /usr/www/jane -u jane -h www.jane.acme.com
.fi
But remember, this multiple-process method does not work with CNAME
multihosting - for that, you must use a single thttpd process with
the -v flag.
.SH "CUSTOM ERRORS"
.PP
thttpd lets you define your own custom error pages for the various
HTTP errors.
There's a separate file for each error number, all stored in one
special directory.
The directory name is "errors", at the top of the web directory tree.
The error files should be named "errNNN.html", where NNN is the error number.
So for example, to make a custom error page for the authentication failure
error, which is number 401, you would put your HTML into the file
"errors/err401.html".
If no custom error file is found for a given error number, then the
usual built-in error page is generated.
.PP
If you're using the virtual hosts option, you can also have different
custom error pages for each different virtual host.
In this case you put another "errors" directory in the top of that
virtual host's web tree.
thttpd will look first in the virtual host errors directory, and
then in the server-wide errors directory, and if neither of those
has an appropriate error file then it will generate the built-in error.
.SH "NON-LOCAL REFERRERS"
.PP
Sometimes another site on the net will embed your image files in their
HTML files, which basically means they're stealing your bandwidth.
You can prevent them from doing this by using non-local referrer filtering.
With this option, certain files can only be fetched via a local referrer.
The files have to be referenced by a local web page.
If a web page on some other site references the files, that fetch will
be blocked.
There are three config-file variables for this feature:
.TP
.B urlpat
A wildcard pattern for the URLs that should require a local referrer.
This is typically just image files, sound files, and so on.
For example:
.nf
urlpat=**.jpg|**.gif|**.au|**.wav
.fi
For most sites, that one setting is all you need to enable referrer filtering.
.TP
.B noemptyreferrers
By default, requests with no referrer at all, or a null referrer, or a
referrer with no apparent hostname, are allowed.
With this variable set, such requests are disallowed.
.TP
.B localpat
A wildcard pattern that specifies the local host or hosts.
This is used to determine if the host in the referrer is local or not.
If not specified it defaults to the actual local hostname.
.SH SYMLINKS
.PP
thttpd is very picky about symbolic links.
Before delivering any file, it first checks each element in the path
to see if it's a symbolic link, and expands them all out to get the final
actual filename.
Along the way it checks for things like links with ".." that go above
the server's directory, and absolute symlinks (ones that start with a /).
These are prohibited as security holes, so the server returns an
error page for them.
This means you can't set up your web directory with a bunch of symlinks
pointing to individual users' home web directories.
Instead you do it the other way around - the user web directories are
real subdirs of the main web directory, and in each user's home
dir there's a symlink pointing to their actual web dir.
.PP
The CGI pattern is also affected - it gets matched against the fully-expanded
filename. So, if you have a single CGI directory but then put a symbolic
link in it pointing somewhere else, that won't work. The CGI program will be
treated as a regular file and returned to the client, instead of getting run.
This could be confusing.
.SH PERMISSIONS
.PP
thttpd is also picky about file permissions.
It wants data files (HTML, images) to be world readable.
Readable by the group that the thttpd process runs as is not enough - thttpd
checks explicitly for the world-readable bit.
This is so that no one ever gets surprised by a file that's not set
world-readable and yet somehow is readable by the HTTP server and
therefore the *whole* world.
.PP
The same logic applies to directories.
As with the standard Unix "ls" program, thttpd will only let you
look at the contents of a directory if its read bit is on; but
as with data files, this must be the world-read bit, not just the
group-read bit.
.PP
thttpd also wants the execute bit to be *off* for data files.
A file that is marked executable but doesn't match the CGI pattern
might be a script or program that got accidentally left in the
wrong directory.
Allowing people to fetch the contents of the file might be a security breach,
so this is prohibited.
Of course if an executable file *does* match the CGI pattern, then it
just gets run as a CGI.
.PP
In summary, data files should be mode 644 (rw-r--r--),
directories should be 755 (rwxr-xr-x) if you want to allow indexing and
711 (rwx--x--x) to disallow it, and CGI programs should be mode
755 (rwxr-xr-x) or 711 (rwx--x--x).
.SH LOGS
.PP
thttpd does all of its logging via syslog(3).
The facility it uses is configurable.
Aside from error messages, there are only a few log entry types of interest,
all fairly similar to CERN Common Log Format:
.nf
Aug 6 15:40:34 acme thttpd[583]: 165.113.207.103 - - "GET /file" 200 357
Aug 6 15:40:43 acme thttpd[583]: 165.113.207.103 - - "HEAD /file" 200 0
Aug 6 15:41:16 acme thttpd[583]: referrer http://www.acme.com/ -> /dir
Aug 6 15:41:16 acme thttpd[583]: user-agent Mozilla/1.1N
.fi
The package includes a script for translating these log entries info
CERN-compatible files.
Note that thttpd does not translate numeric IP addresses into domain names.
This is both to save time and as a minor security measure (the numeric
address is harder to spoof).
.PP
Relevant config.h option: LOG_FACILITY.
.PP
If you'd rather log directly to a file, you can use the -l command-line
flag. But note that error messages still go to syslog.
.SH SIGNALS
.PP
thttpd handles a couple of signals, which you can send via the
standard Unix kill(1) command:
.TP
.B INT,TERM
These signals tell thttpd to shut down immediately.
Any requests in progress get aborted.
.TP
.B USR1
This signal tells thttpd to shut down as soon as it's done servicing
all current requests.
In addition, the network socket it uses to accept new connections gets
closed immediately, which means a fresh thttpd can be started up
immediately.
.TP
.B USR2
This signal tells thttpd to generate the statistics syslog messages
immediately, instead of waiting for the regular hourly update.
.TP
.B HUP
This signal tells thttpd to close and re-open its (non-syslog) log file,
for instance if you rotated the logs and want it to start using the
new one.
This is a little tricky to set up correctly, for instance if you are using
chroot() then the log file must be within the chroot tree, but it's
definitely doable.
.SH SCTP
.PP
On operating systems supporting the Stream Control Transmission Protocol,
thttpd also accepts SCTP associations in addition to TCP connections.
There are two config-file variables for this feature:
.TP
.B sctp_send_at_once_limit
This variable limits the amount data is provided to the SCTP stack in a send call.
If this variable is set to a non-zero value, this amount is limited by the minimum
of this variable and a quarter of the send buffer size.
If not set or set to zero, the default is a quarter of the send buffer size.
.TP
.B sctp_do_not_use_eeor
Some platforms support the sending of large user message. On these platforms
every HTTP message is sent as a single SCTP user message. This can be tured off
by setting this variable.
.SH "SEE ALSO"
redirect(8), ssi(8), makeweb(1), htpasswd(1), syslogtocern(8), weblog_parse(1), http_get(1)
.SH THANKS
.PP
Many thanks to contributors, reviewers, testers:
John LoVerso, Jordan Hayes, Chris Torek, Jim Thompson, Barton Schaffer,
Geoff Adams, Dan Kegel, John Hascall, Bennett Todd, KIKUCHI Takahiro,
Catalin Ionescu.
Special thanks to Craig Leres for substantial debugging and development,
and for not complaining about my coding style very much.
.SH AUTHOR
Copyright © 1995,1998,1999,2000 by Jef Poskanzer <[email protected]>.
All rights reserved.
.\" Redistribution and use in source and binary forms, with or without
.\" modification, are permitted provided that the following conditions
.\" are met:
.\" 1. Redistributions of source code must retain the above copyright
.\" notice, this list of conditions and the following disclaimer.
.\" 2. Redistributions in binary form must reproduce the above copyright
.\" notice, this list of conditions and the following disclaimer in the
.\" documentation and/or other materials provided with the distribution.
.\"
.\" THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
.\" ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
.\" IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
.\" ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
.\" FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
.\" DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
.\" OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
.\" HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
.\" LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
.\" OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
.\" SUCH DAMAGE.