-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdatasets.py
68 lines (59 loc) · 1.72 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
"""
Evaluation datasets for word analogy queries
"""
from glob import glob
#
# capital-common-countries dataset
# excluding (london, england) pair
#
ccc_pairs = [
("athens", "greece"),
("baghdad", "iraq"),
("bangkok", "thailand"),
("beijing", "china"),
("berlin", "germany"),
("bern", "switzerland"),
("cairo", "egypt"),
("canberra", "australia"),
("hanoi", "vietnam"),
("havana", "cuba"),
("helsinki", "finland"),
("islamabad", "pakistan"),
("kabul", "afghanistan"),
("madrid", "spain"),
("moscow", "russia"),
("oslo", "norway"),
("ottawa", "canada"),
("paris", "france"),
("rome", "italy"),
("stockholm", "sweden"),
("tehran", "iran"),
("tokyo", "japan"),
]
#
# BATS Dataset
# ------------------------------------------------------------------------------
#
# `bats_path` on Alba server:
# /nlp/projekty/dimo/datasets/bats/BATS_3.0
#
# It contains plain lowercased words. If you need lemposes instead,
# use corresponding adjustment functions from the `conv.py` script.
#
# Note: L07, L08 and L10 mix up POS tags, those 3 are hard-annotated
# in /nlp/projekty/dimo/datasets/bats/BATS_3.0_pos
# :( still use adj. funcs. for others, they are still plain there
#
def get_bats(bats_path):
bats = {} # dictionary {category_name: list_of_pairs}
for bats_file in glob(bats_path + "/*/*"):
category_name = bats_file.split("/")[-1].split(" ")[0].lower()
bats[category_name] = []
with open(bats_file) as f:
for line in f:
parts = line.strip("\r\n /").split("\t")
bats[category_name].append(
(parts[0],
parts[1].split("/"))
)
return bats