-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
530 lines (448 loc) · 21.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
'''
MemVir
Copyright (c) 2021-present NAVER Corp.
Apache License v2.0
'''
import os
import sys
import glob
import random
import shutil
import argparse
import numpy as np
from tqdm import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.tensorboard import SummaryWriter
import net
import loss
import utils
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('--data', help='path to dataset')
parser.add_argument('--data_name', default=None, type=str,
help='dataset name')
parser.add_argument('--save_path', default=None, type=str,
help='where your models will be saved')
parser.add_argument('--max_to_keep', default=1, type=int,
help='how many keep your saved models')
parser.add_argument('--check_epoch', default=5, type=int,
help='do eval every check_epoch')
parser.add_argument('-j', '--workers', default=5, type=int,
help='number of data loading workers')
parser.add_argument('--epochs', default=50, type=int,
help='number of total epochs to run')
parser.add_argument('--start_epoch', default=0, type=int,
help='manual epoch number')
parser.add_argument('-b', '--batch_size', default=128, type=int,
help='mini-batch size')
parser.add_argument('--modellr', default=0.0001, type=float,
help='initial model learning rate')
parser.add_argument('--centerlr', default=0.01, type=float,
help='initial center learning rate')
parser.add_argument('--wd', '--weight_decay', default=1e-4, type=float,
help='weight decay', dest='weight_decay')
parser.add_argument('--gpu', default=None, type=str,
help='GPU id to use.')
parser.add_argument('--eps', default=0.01, type=float,
help='epsilon for Adam')
parser.add_argument('--decay_rate', default=0.1, type=float,
help='decay rate')
parser.add_argument('--decay_step', default=20, type=int,
help='decay step')
parser.add_argument('--decay_stop', default=100000, type=int,
help='decay stop')
parser.add_argument('--dim', default=64, type=int,
help='dimensionality of embeddings')
parser.add_argument('--freeze_BN', action='store_true',
help='freeze bn')
parser.add_argument('-C', default=98, type=int,
help='C')
parser.add_argument('--backbone', default='bninception', type=str,
help='bninception, resnet18, resnet34, resnet50, resnet101')
parser.add_argument('--pooling_type', default='GAP', type=str,
help='GAP | GMP | GAP,GMP')
parser.add_argument('--optimizer', default='adam', type=str,
help='adam | adamw')
parser.add_argument('--eval_best', action='store_true',
help='eval best saved model')
parser.add_argument('--k_list', default='1,2,4,8', type=str,
help='Recall@k list')
parser.add_argument('--input_size', default=224, type=int,
help='input size')
## soft max variation
parser.add_argument('--do_nmi', action='store_true',
help='do nmi or not')
parser.add_argument('--loss', default='SoftMax_vanilla', type=str,
help='loss you want')
parser.add_argument('--scale', default=1.0, type=float,
help='scale for softmax variations')
parser.add_argument('--train_with_l2norm', default=True, type=lambda s: s.lower() in ['true', 't', 'yes', '1'],
help='use l2norm before criterion')
parser.add_argument('--init_type', default='normal', type=str,
help='select normal | uniform for proxy weights')
parser.add_argument('--n_instance', default=1, type=int,
help='n_instance')
parser.add_argument('--early_stop_epoch', default=0, type=int,
help='early stop if there is no performance increase for such epochs')
parser.add_argument('--use_amp', default=False, type=lambda s: s.lower() in ['true', 't', 'yes', '1'],
help='use AMP')
parser.add_argument('--deterministic', default=False, type=lambda s: s.lower() in ['true', 't', 'yes', '1'],
help='deterministic experiments')
## arguments for MemVir
parser.add_argument('--memvir', default=False, type=lambda s: s.lower() in ['true', 't', 'yes', '1'],
help='Use MemVir training strategy')
parser.add_argument('--warm_epoch', default=0, type=int, help='warm up epoch U_e for MemVir')
parser.add_argument('--mem_num_step', default=-1, type=int, help='number of steps N to use for MemVir')
parser.add_argument('--mem_step_gap', default=1, type=int, help='gap M between steps for MemVir')
def main():
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
if args.data_name.lower() in ["car", "cars", "cars196"]:
args.C = 98
args.k_list = '1,2,4,8'
elif args.data_name.lower() in ["sop", "stanfordonlineproducts"]:
args.C = 11318
args.k_list = '1,10,100,1000'
elif args.data_name.lower() in ["cub", "cub200"]:
args.C = 100
args.k_list = '1,2,4,8'
elif args.data_name.lower() in ['inshop']:
args.C = 3997
args.k_list = '1,10,20,40'
else:
print("Using custom dataset")
if args.deterministic:
torch.manual_seed(0)
torch.backends.cudnn.deterministic = True
np.random.seed(0)
torch.backends.cudnn.benchmark = False
random.seed(0)
# save training arguments in the save_path
if args.eval_best:
args.save_path = os.path.join(args.save_path, 'best')
if not os.path.exists(args.save_path):
if args.eval_best:
print('Train model first!')
exit()
os.makedirs(args.save_path)
args_file = os.path.join(args.save_path, "args.txt")
with open(args_file, "w") as tf:
tf.write('\n'.join(sys.argv[1:]))
# define data loader
traindir = os.path.join(args.data, 'train')
testdir = os.path.join(args.data, 'test')
if 'resnet' in args.backbone:
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
scale_value = 1
else:
normalize = transforms.Normalize(mean=[104., 117., 128.],
std=[1., 1., 1.])
scale_value = 255
train_loader = utils.call_train_loader(traindir, args,
transforms.Compose([
transforms.Lambda(utils.RGB2BGR),
transforms.RandomResizedCrop(args.input_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Lambda(lambda x: x.mul(scale_value)),
normalize,
]))
test_transforms = transforms.Compose([transforms.Lambda(utils.RGB2BGR),
transforms.Resize(256),
transforms.CenterCrop(args.input_size),
transforms.ToTensor(),
transforms.Lambda(lambda x: x.mul(scale_value)),
normalize,])
test_image = datasets.ImageFolder(testdir, test_transforms)
test_class_dict, max_r = utils.get_class_dict(test_image)
args.test_class_dict = test_class_dict
args.max_r = max_r
test_loader = torch.utils.data.DataLoader(
test_image,
batch_size=128, shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.data_name.lower() == 'inshop':
image_info = np.array(test_image.imgs)
print('\tcheck: gallery == %s, query == %s\n' % (
image_info[0, 0].split('/')[-3], image_info[-1, 0].split('/')[-3]))
args.query_labels = np.array(
[info[0].split('/')[-2] for info in image_info[image_info[:, 1] == '1']]) # 14218 images
args.gallery_labels = np.array(
[info[0].split('/')[-2] for info in image_info[image_info[:, 1] == '0']]) # 12612 images
if len(args.query_labels) != 14218 or len(args.gallery_labels) != 12612:
print('check you inshop DB')
exit()
# Initialize MemVir class
if args.memvir:
memvir = loss.MemVir(args)
else:
memvir = None
# define backbone
if args.backbone == 'bninception':
model = net.bninception().cuda()
else: # resnet family
model = net.Resnet(resnet_type=args.backbone).cuda()
# define pooling method
pooling = net.pooling(pooling_type=args.pooling_type.split(',')).cuda()
# define embedding method
embedding = net.embedding(input_dim=model.output_dim, output_dim=args.dim).cuda()
# define loss function (criterion) and optimizer
if args.loss.lower() == 'NormSoftmax'.lower():
criterion = loss.NormSoftmax(args.dim, args.C, scale=args.scale, memvir=memvir).cuda()
elif args.loss.lower() == 'ProxyNCA'.lower():
criterion = loss.ProxyNCA(args.dim, args.C, scale=args.scale, init_type=args.init_type, memvir=memvir).cuda()
else:
raise ValueError("{} is not supported loss name".format(args.loss))
params_list = [{"params": model.parameters(), "lr": args.modellr},
{"params": embedding.parameters(), "lr": args.modellr},
{"params": criterion.parameters(), "lr": args.centerlr}]
if args.optimizer.lower() == 'Adam'.lower():
optimizer = torch.optim.Adam(params_list, eps=args.eps, weight_decay=args.weight_decay)
elif args.optimizer.lower() == 'AdamW'.lower():
optimizer = torch.optim.AdamW(params_list, eps=args.eps, weight_decay=args.weight_decay)
elif args.optimizer.lower() == 'RMSprop'.lower():
optimizer = torch.optim.RMSprop(params_list, alpha=0.99, weight_decay=args.weight_decay, momentum=0.9)
elif args.optimizer.lower() == 'SGD'.lower():
optimizer = torch.optim.SGD(params_list, weight_decay=args.weight_decay, momentum=0.9, nesterov=True)
if not args.deterministic:
cudnn.benchmark = True
## do train and test!
metric_list = ['Recall_1', 'RP', 'MAP']
best_dict = {'Recall_1': 0.0,
'RP': 0.0,
'MAP': 0.0}
best_check = {'Recall_1': False,
'RP': False,
'MAP': False}
current_dict = {'Recall_1': 0.0,
'RP': 0.0,
'MAP': 0.0}
k_list = [int(k) for k in args.k_list.split(',')] # [1, 2, 4, 8]
global_step = 0
# resume model
if args.save_path is not None and os.path.exists(args.save_path):
pth_list = sorted(glob.glob(os.path.join(args.save_path, '*.pth')))
if len(pth_list) != 0:
latest_pth = pth_list[-1]
load_state = torch.load(latest_pth)
try:
# for backward compatibility
best_recall = load_state['best_acc']
recall_1 = load_state['acc']
print('\n\n\tResume pretrained models %d epoch %.4f recall_1\n\n' % (load_state['epoch'], recall_1))
except:
best_dict = load_state['best_acc']
current_dict = load_state['acc']
print('\n\n\tResume pretrained models %d epoch, recall_1, RP, MAP: %.2f, %.2f, %.2f \n\n' % (load_state['epoch'], current_dict['Recall_1'], current_dict['RP'], current_dict['MAP']))
args.start_epoch = load_state['epoch'] # - 1
try:
global_step = load_state['global_step']
except:
global_step = 0
# state
model.load_state_dict(load_state['model_state'])
embedding.load_state_dict(load_state['embedding_state'])
criterion.load_state_dict(load_state['criterion_state'])
optimizer.load_state_dict(load_state['optimizer'])
if not args.eval_best:
writer = SummaryWriter(args.save_path)
else:
args.epochs = 1000000
if args.use_amp:
try:
from torch.cuda.amp import GradScaler, autocast
scaler = GradScaler() # Creates a GradScaler for AMP
print('Running with AMP')
except:
args.use_amp = False
scaler = None
autocast = None
print('Failed importing AMP, so just running without AMP')
else:
print('Running without AMP')
scaler = None
autocast = None
early_stop_count = 0
for epoch in range(args.start_epoch, args.epochs):
epoch += 1
print('Training in Epoch[{}]'.format(epoch))
adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
if not args.eval_best:
global_step = train(train_loader, model, pooling, embedding, criterion, optimizer, writer, global_step,
epoch, memvir, scaler, autocast, args)
# evaluate on validation set
if epoch % args.check_epoch == 0:
nmi, recall, RP, MAP, features, labels = validate(test_loader, model, pooling, embedding, k_list, args)
print(
'Recall@1: {recall[0]:.4f}; RP: {RP:.4f}; MAP: {MAP:.4f} \n'.format(
recall=recall, RP=RP, MAP=MAP))
if args.eval_best:
print('Evaluation of best saved model is done')
exit()
for k_idx, k in enumerate(k_list):
writer.add_scalar('eval_epoch/Recall_%d' % k, recall[k_idx], epoch)
writer.add_scalar('eval_step/Recall_%d' % k, recall[k_idx], global_step)
writer.flush()
writer.add_scalar('eval_epoch/RP', RP, epoch)
writer.add_scalar('eval_epoch/MAP', MAP, epoch)
writer.add_scalar('eval_step/RP', RP, global_step)
writer.add_scalar('eval_step/MAP', MAP, global_step)
current_dict['Recall_1'] = recall[0]
current_dict['RP'] = RP
current_dict['MAP'] = MAP
if args.save_path is not None:
early_stop_count = check_best(recall, k_list, best_dict, best_check, current_dict, metric_list, early_stop_count, writer, epoch, global_step)
# save first then check early_stop_count
save_state = {'epoch': epoch,
'model_state': model.state_dict(),
'embedding_state': embedding.state_dict(),
'criterion_state': criterion.state_dict(),
'acc': current_dict,
'best_acc': best_dict,
'optimizer': optimizer.state_dict(),
'global_step': global_step}
save_checkpoint(save_state, best_check, args.max_to_keep, args.save_path, writer)
if early_stop_count == args.early_stop_epoch and args.early_stop_epoch != 0:
print('Exit training due to no performance increase for {} epochs'.format(args.early_stop_epoch))
break
best_str = 'Best'
for metric_name in metric_list:
best_str += ' %s: %.4f' % (metric_name, best_dict[metric_name])
print(best_str)
print('')
def check_best(recall, k_list, best_dict, best_check, current_dict, metric_list, early_stop_count, writer, epoch, global_step):
'''
metric_list = ['Recall_1', 'RP', 'MAP']
writer = Tensorboard wirter
'''
for metric_name in metric_list:
if best_dict[metric_name] < current_dict[metric_name]:
best_check[metric_name] = True
best_dict[metric_name] = current_dict[metric_name]
early_stop_count = -1
writer.add_scalar('eval_epoch/%s_best' % metric_name, best_dict[metric_name], epoch)
writer.add_scalar('eval_step/%s_best' % metric_name, best_dict[metric_name], global_step)
writer.add_scalar('eval_best/%s_best' % metric_name, best_dict[metric_name], epoch)
for recall_k, k in zip(recall[1:], k_list[1:]):
writer.add_scalar('eval_best/Recall_%d' % k, recall_k, epoch)
writer.flush()
else:
best_check[metric_name] = False
return early_stop_count + 1
def swap_idx(array, now_, next_):
tmp = array[now_]
array[now_] = array[next_]
array[next_] = tmp
return array
def train(train_loader, model, pooling, embedding, criterion, optimizer, writer, global_step, epoch, memvir, scaler,
autocast, args):
# switch to train mode
model.train()
embedding.train()
criterion.train()
if args.freeze_BN:
for m in model.modules():
if isinstance(m, nn.BatchNorm2d):
m.eval()
total_iter = len(train_loader)
for i, (input, target) in enumerate(train_loader):
if args.gpu is not None:
input = input.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
def forward(input, memvir, target, criterion, args):
# compute output
output = model(input)
output = pooling(output)
output = embedding(output, l2_norm=args.train_with_l2norm)
if args.memvir:
memvir.get_memory(epoch)
memvir.put_memory(output, target, criterion, epoch)
loss = criterion(output, target)
return loss, output
if args.use_amp:
with autocast():
loss, output = forward(input, memvir, target, criterion, args)
else:
loss, output = forward(input, memvir, target, criterion, args)
# TODO: Unify train_info type as dict for every loss
if i % 10 == 0:
print('[%d/%d] loss: %.4f' % (i + 1, total_iter, loss.item()))
writer.add_scalar('train/loss', loss, global_step)
writer.add_scalar('train/learning_rate', optimizer.param_groups[0]['lr'], global_step)
writer.flush()
# compute gradient and do SGD step
optimizer.zero_grad()
if args.use_amp:
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
optimizer.step()
global_step += 1
return global_step
def validate(test_loader, model, pooling, embedding, k_list, args):
# switch to evaluation mode
model.eval()
embedding.eval()
testdata = torch.Tensor()
testdata_l2 = torch.Tensor()
testlabel = torch.LongTensor()
with torch.no_grad():
for i, (input, target) in tqdm(enumerate(test_loader), total=len(test_loader)):
if args.gpu is not None:
input = input.cuda(non_blocking=True)
# compute output
output = model(input)
output = pooling(output)
output = embedding(output, l2_norm=False)
output_l2 = F.normalize(output, p=2, dim=1) # TODO
testdata = torch.cat((testdata, output.cpu()), 0)
testdata_l2 = torch.cat((testdata_l2, output_l2.cpu()), 0)
testlabel = torch.cat((testlabel, target))
features = testdata.numpy()
features_l2 = testdata_l2.numpy()
labels = testlabel.numpy()
nmi, recall, RP, MAP = utils.evaluation(features_l2, labels, k_list, args)
return nmi, recall, RP, MAP, features, labels
def adjust_learning_rate(optimizer, epoch, args):
if epoch % args.decay_step == 0 and epoch <= args.decay_stop:
for param_group in optimizer.param_groups:
param_group['lr'] *= args.decay_rate
print(param_group['lr'])
def save_checkpoint(state, best_check, max_to_keep, save_path, writer, filename='model.pth'):
'''
save_path = args.save_path #folder
'''
filename = filename.replace('.pth', '_%05d.pth' % state['epoch'])
if not os.path.exists(save_path):
os.makedirs(save_path)
pth_save_path = os.path.join(save_path, filename)
torch.save(state, pth_save_path)
# check max_to_keep
if max_to_keep != 0:
for legacy_file in sorted(glob.glob(os.path.join(save_path, '*.pth')))[:-max_to_keep]:
os.remove(legacy_file)
# check best_check dict
for metric_name, is_best in best_check.items():
best_save_path = os.path.join(save_path, 'best_%s' % metric_name)
if not os.path.exists(best_save_path):
os.makedirs(best_save_path)
if is_best:
for legacy_file in glob.glob(os.path.join(best_save_path, '*')):
os.remove(legacy_file)
pth_best_save_path = os.path.join(best_save_path, filename)
shutil.copyfile(pth_save_path, pth_best_save_path)
if __name__ == '__main__':
main()