forked from aws/amazon-sagemaker-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathabalone.py
89 lines (66 loc) · 3.3 KB
/
abalone.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import numpy as np
import os
import tensorflow as tf
from tensorflow.python.estimator.export.export import build_raw_serving_input_receiver_fn
from tensorflow.python.estimator.export.export_output import PredictOutput
INPUT_TENSOR_NAME = "inputs"
SIGNATURE_NAME = "serving_default"
LEARNING_RATE = 0.001
def model_fn(features, labels, mode, params):
"""Model function for Estimator.
# Logic to do the following:
# 1. Configure the model via Keras functional api
# 2. Define the loss function for training/evaluation using Tensorflow.
# 3. Define the training operation/optimizer using Tensorflow operation/optimizer.
# 4. Generate predictions as Tensorflow tensors.
# 5. Generate necessary evaluation metrics.
# 6. Return predictions/loss/train_op/eval_metric_ops in EstimatorSpec object"""
# 1. Configure the model via Keras functional api
first_hidden_layer = tf.keras.layers.Dense(10, activation='relu', name='first-layer')(features[INPUT_TENSOR_NAME])
second_hidden_layer = tf.keras.layers.Dense(10, activation='relu')(first_hidden_layer)
output_layer = tf.keras.layers.Dense(1, activation='linear')(second_hidden_layer)
predictions = tf.reshape(output_layer, [-1])
# Provide an estimator spec for `ModeKeys.PREDICT`.
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(
mode=mode,
predictions={"ages": predictions},
export_outputs={SIGNATURE_NAME: PredictOutput({"ages": predictions})})
# 2. Define the loss function for training/evaluation using Tensorflow.
loss = tf.losses.mean_squared_error(labels, predictions)
# 3. Define the training operation/optimizer using Tensorflow operation/optimizer.
train_op = tf.contrib.layers.optimize_loss(
loss=loss,
global_step=tf.contrib.framework.get_global_step(),
learning_rate=params["learning_rate"],
optimizer="SGD")
# 4. Generate predictions as Tensorflow tensors.
predictions_dict = {"ages": predictions}
# 5. Generate necessary evaluation metrics.
# Calculate root mean squared error as additional eval metric
eval_metric_ops = {
"rmse": tf.metrics.root_mean_squared_error(
tf.cast(labels, tf.float32), predictions)
}
# Provide an estimator spec for `ModeKeys.EVAL` and `ModeKeys.TRAIN` modes.
return tf.estimator.EstimatorSpec(
mode=mode,
loss=loss,
train_op=train_op,
eval_metric_ops=eval_metric_ops)
def serving_input_fn(params):
tensor = tf.placeholder(tf.float32, shape=[1, 7])
return build_raw_serving_input_receiver_fn({INPUT_TENSOR_NAME: tensor})()
params = {"learning_rate": LEARNING_RATE}
def train_input_fn(training_dir, params):
return _input_fn(training_dir, 'abalone_train.csv')
def eval_input_fn(training_dir, params):
return _input_fn(training_dir, 'abalone_test.csv')
def _input_fn(training_dir, training_filename):
training_set = tf.contrib.learn.datasets.base.load_csv_without_header(
filename=os.path.join(training_dir, training_filename), target_dtype=np.int, features_dtype=np.float32)
return tf.estimator.inputs.numpy_input_fn(
x={INPUT_TENSOR_NAME: np.array(training_set.data)},
y=np.array(training_set.target),
num_epochs=None,
shuffle=True)()