forked from draffensperger/golp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlp.go
468 lines (414 loc) · 13.1 KB
/
lp.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
/*
Package golp gives Go bindings for LPSolve, a Mixed Integer Linear
Programming (MILP) solver.
For usage examples, see https://github.com/draffensperger/golp#examples.
Not all LPSolve functions have bindings. Feel free to open an issue or
contact me if you would like more added.
One difference from the LPSolve C library, is that the golp columns are always
zero-based.
The Go code of golp is MIT licensed, but LPSolve itself is licensed under the
LGPL. This roughly means that you can include golp in a closed-source project
as long as you do not modify LPSolve itself and you use dynamic linking to
access LPSolve (and provide a way for someone to link your program to a
different version of LPSolve).
For the legal details: http://lpsolve.sourceforge.net/5.0/LGPL.htm
*/
package golp
/*
// For Mac, assume LPSolve installed via MacPorts
#cgo darwin CFLAGS: -I/opt/local/include/lpsolve
#cgo darwin LDFLAGS: -L/opt/local/lib -llpsolve55
// For Linux, assume LPSolve bundled in local lpsolve directory
#cgo linux CFLAGS: -I${SRCDIR}/lpsolve
#cgo linux LDFLAGS: -L${SRCDIR}/lpsolve -llpsolve55 -Wl,-rpath=${SRCDIR}/lpsolve
// For Windows, assume LPSolve bundled in local lpsolve directory
#cgo windows CFLAGS: -I${SRCDIR}/lpsolve
#cgo windows LDFLAGS: -L${SRCDIR}/lpsolve -llpsolve55 -Wl,-rpath=${SRCDIR}/lpsolve
#include "lp_lib.h"
#include <stdlib.h>
#include "stringbuilder.h"
int write_lp_to_str_callback(void* userhandle, char* buf) {
sb_append_str((stringbuilder*) userhandle, buf);
return 0;
}
char* write_lp_to_str(lprec *lp) {
stringbuilder* sb = sb_new();
write_lpex(lp, sb, write_lp_to_str_callback);
char* str = sb_cstring(sb);
sb_destroy(sb, 0);
return str;
}
*/
import "C"
import (
"fmt"
"runtime"
"unsafe"
)
// LP stores a linear (or mixed integer) programming problem
type LP struct {
ptr *C.lprec
}
// NewLP create a new linear program structure with specified number of rows and
// columns. The underlying C data structure's memory will be freed in a Go
// finalizer, so there is no need to explicitly deallocate it.
func NewLP(rows, cols int) *LP {
l := new(LP)
l.ptr = C.make_lp(C.int(rows), C.int(cols))
runtime.SetFinalizer(l, deleteLP)
l.SetAddRowMode(true)
l.SetVerboseLevel(IMPORTANT)
return l
}
func deleteLP(l *LP) {
C.delete_lp(l.ptr)
}
// NumRows returns the number of rows (constraints) in the linear program.
// See http://lpsolve.sourceforge.net/5.5/get_Nrows.htm
func (l *LP) NumRows() int {
return int(C.get_Nrows(l.ptr))
}
// NumCols returns the number of columns (variables) in the linear program.
// See http://lpsolve.sourceforge.net/5.5/get_Ncolumns.htm
func (l *LP) NumCols() int {
return int(C.get_Ncolumns(l.ptr))
}
// VerboseLevel represents different verbose levels,
// see http://lpsolve.sourceforge.net/5.1/set_verbose.htm
type VerboseLevel int
// Verbose levels
const (
NEUTRAL VerboseLevel = iota // NEUTRAL == 0
CRITICAL // CRITICAL == 1
SEVERE
IMPORTANT
NORMAL
DETAILED
FULL
)
// Note that we can't use stringer because this does not work well with cgo
// yet: https://github.com/golang/go/issues/20358
func (level VerboseLevel) String() string {
switch level {
case NEUTRAL:
return "NEUTRAL"
case CRITICAL:
return "CRITICAL"
case SEVERE:
return "SEVERE"
case IMPORTANT:
return "IMPORTANT"
case NORMAL:
return "NORMAL"
case DETAILED:
return "DETAILED"
case FULL:
return "FULL"
default:
return fmt.Sprintf("VerboseLevel(%d)", int(level))
}
}
// SetVerboseLevel changes the output verbose level (golp defaults it to
// IMPORTANT).
// See http://lpsolve.sourceforge.net/5.1/set_verbose.htm
func (l *LP) SetVerboseLevel(level VerboseLevel) {
C.set_verbose(l.ptr, C.int(level))
}
// SetColName changes a column name. Unlike the LPSolve C library, col is zero-based
func (l *LP) SetColName(col int, name string) {
cstrName := C.CString(name)
C.set_col_name(l.ptr, C.int(col+1), cstrName)
C.free(unsafe.Pointer(cstrName))
}
// ColName gives a column name, index is zero-based.
func (l *LP) ColName(col int) string {
return C.GoString(C.get_col_name(l.ptr, C.int(col+1)))
}
// SetUnbounded specifies that the given column has a lower bound of -infinity
// and an upper bound of +infinity. (By default, columns have a lower bound of
// 0 and an upper bound of +infinity.)
// See http://lpsolve.sourceforge.net/5.5/set_unbounded.htm
func (l *LP) SetUnbounded(col int) {
C.set_unbounded(l.ptr, C.int(col+1))
}
// SetInt specifies that the given column must take an integer value.
// This triggers LPSolve to use branch-and-bound instead of simplex to solve.
// See http://lpsolve.sourceforge.net/5.5/set_int.htm
func (l *LP) SetInt(col int, mustBeInt bool) {
C.set_int(l.ptr, C.int(col+1), boolToUChar(mustBeInt))
}
// IsInt returns whether the given column must take an integer value
// See http://lpsolve.sourceforge.net/5.5/is_int.htm
func (l *LP) IsInt(col int) bool {
return uCharToBool(C.is_int(l.ptr, C.int(col+1)))
}
// SetBinary specifies that the given column must take a binary (0 or 1) value
// See http://lpsolve.sourceforge.net/5.5/set_binary.htm
func (l *LP) SetBinary(col int, mustBeBinary bool) {
C.set_binary(l.ptr, C.int(col+1), boolToUChar(mustBeBinary))
}
// IsBinary returns whether the given column must take a binary (0 or 1) value
// See http://lpsolve.sourceforge.net/5.5/is_binary.htm
func (l *LP) IsBinary(col int) bool {
return uCharToBool(C.is_binary(l.ptr, C.int(col+1)))
}
// SetAddRowMode specifies whether adding by row (true) or by column (false)
// performs best. By default NewLP sets this for adding by row to perform best.
// See http://lpsolve.sourceforge.net/5.5/set_add_rowmode.htm
func (l *LP) SetAddRowMode(addRowMode bool) {
C.set_add_rowmode(l.ptr, boolToUChar(addRowMode))
}
func boolToUChar(b bool) C.uchar {
if b {
return C.uchar(1)
}
return C.uchar(0)
}
func uCharToBool(c C.uchar) bool {
return c != C.uchar(0)
}
// PresolveType specifies type of presolve,
// see http://lpsolve.sourceforge.net/5.5/set_presolve.htm
type PresolveType int
// Presolve types
const (
NONE PresolveType = 0
ROWS = 1
COLS = 2
LINDEP = 4
SOS = 32
REDUCEMIP = 64
KNAPSACK = 128
ELIMEQ2 = 256
IMPLIEDFREE = 512
REDUCEGCD = 1024
PROBEFIX = 2048
PROBEREDUCE = 4096
ROWDOMANITE = 8192
COLDOMINATE = 16384
MERGEROWS = 32768
COLFIXDUAL = 131072
BOUNDS = 262144
DUALS = 524288
SENSDUALS = 1048576
)
func (level PresolveType) String() string {
switch level {
case NONE:
return "PRESOLVE_NONE"
case ROWS:
return "PRESOLVE_ROWS"
case COLS:
return "PRESOLVE_COLS"
case LINDEP:
return "PRESOLVE_LINDEP"
case SOS:
return "PRESOLVE_SOS"
case REDUCEMIP:
return "PRESOLVE_REDUCEMIP"
case KNAPSACK:
return "PRESOLVE_KNAPSACK"
case ELIMEQ2:
return "PRESOLVE_ELIMEQ2"
case IMPLIEDFREE:
return "PRESOLVE_IMPLIEDFREE"
case REDUCEGCD:
return "PRESOLVE_REDUCEGCD"
case PROBEFIX:
return "PRESOLVE_PROBEFIX"
case PROBEREDUCE:
return "PRESOLVE_PROBEREDUCE"
case ROWDOMANITE:
return "PRESOLVE_ROWDOMINATE"
case COLDOMINATE:
return "PRESOLVE_COLDOMINATE"
case MERGEROWS:
return "PRESOLVE_MERGEROWS"
case COLFIXDUAL:
return "PRESOLVE_COLFIXDUAL"
case BOUNDS:
return "PRESOLVE_BOUNDS"
case DUALS:
return "PRESOLVE_DUALS"
case SENSDUALS:
return "PRESOLVE_SENSDUALS"
default:
return fmt.Sprintf("PresolveType(%d)", int(level))
}
}
// SetPresolve specifies whether pre solve should be used to try to simplify problem,
// by default it is set to not to perform pre solve, level specifies type of pre solve
// and maxLoops the maximum number of times pre solve may be done (use 0 to determine
// number of pre solve loops automatically by get_presolveloop()).
// For more info see: http://lpsolve.sourceforge.net/5.5/set_presolve.htm
func (l *LP) SetPresolve(level PresolveType, maxLoops int) {
if maxLoops == 0 {
maxLoops = l.GetPresolveLoops()
}
C.set_presolve(l.ptr, C.int(level), C.int(maxLoops))
}
// GetPresolveLoops determines optimal number of loops for pre solve.
// See: http://lpsolve.sourceforge.net/5.5/get_presolveloops.htm
func (l *LP) GetPresolveLoops() int {
return int(C.get_presolveloops(l.ptr))
}
// ConstraintType can be less than (golp.LE), greater than (golp.GE) or equal (golp.EQ)
type ConstraintType int
// Contraint type constants
const ( // iota is reset to 0
_ ConstraintType = iota // don't use 0
LE // LE == 1
GE // GE == 2
EQ // EQ == 3
)
func (t ConstraintType) String() string {
switch t {
case LE:
return "LE"
case GE:
return "GE"
case EQ:
return "EQ"
default:
return fmt.Sprintf("ConstraintType(%d)", int(t))
}
}
// AddConstraint adds a constraint to the linear program. This (unlike the
// LPSolve C function), expects the data in the row param to start at index 0
// for the first column.
// See http://lpsolve.sourceforge.net/5.5/add_constraint.htm
func (l *LP) AddConstraint(row []float64, ct ConstraintType, rightHand float64) error {
cRow := make([]C.double, len(row)+1)
cRow[0] = 0.0
for i := 0; i < len(row); i++ {
cRow[i+1] = C.double(row[i])
}
C.add_constraint(l.ptr, &cRow[0], C.int(ct), C.double(rightHand))
return nil
}
// Entry is for sparse constraint or objective function rows
type Entry struct {
Col int
Val float64
}
// AddConstraintSparse adds a constraint row by specifying only the non-zero
// entries. Entries column indices are zero-based.
// See http://lpsolve.sourceforge.net/5.5/add_constraint.htm
func (l *LP) AddConstraintSparse(row []Entry, ct ConstraintType, rightHand float64) error {
cRow := make([]C.double, len(row))
cColNums := make([]C.int, len(row))
for i, entry := range row {
cRow[i] = C.double(entry.Val)
cColNums[i] = C.int(entry.Col + 1)
}
C.add_constraintex(l.ptr, C.int(len(row)), &cRow[0], &cColNums[0], C.int(ct), C.double(rightHand))
return nil
}
// SetObjFn changes the objective function. Row indices are zero-based.
// See http://lpsolve.sourceforge.net/5.5/set_obj_fn.htm
func (l *LP) SetObjFn(row []float64) {
l.SetAddRowMode(false)
cRow := make([]C.double, len(row)+1)
cRow[0] = 0.0
for i := 0; i < len(row); i++ {
cRow[i+1] = C.double(row[i])
}
C.set_obj_fn(l.ptr, &cRow[0])
}
// SetMaximize will set the objective function to maximize instead of
// minimizing by default.
// and http://lpsolve.sourceforge.net/5.5/set_maxim.htm
func (l *LP) SetMaximize() {
C.set_maxim(l.ptr)
}
// SolutionType represents the result type.
type SolutionType int
// Return values must not be enumerated from 0 in, many are not used
// any more and therefore there are gaps.
// Also lpsolve55 will not return PROCFAIL and other types any more,
// they're here for compatibility reasons.
// To make this clear we don't use iota but list the values.
// Constants for the solution result type.
// See http://lpsolve.sourceforge.net/5.5/solve.htm
const (
NOMEMORY SolutionType = -2
OPTIMAL = 0
SUBOPTIMAL = 1
INFEASIBLE = 2
UNBOUNDED = 3
DEGENERATE = 4
NUMFAILURE = 5
USERABORT = 6
TIMEOUT = 7
PROCFAIL = 10
PROCBREAK = 11
FEASFOUND = 12
NOFEASFOUND = 13
)
func (t SolutionType) String() string {
switch t {
case NOMEMORY:
return "NOMEMORY"
case OPTIMAL:
return "OPTIMAL"
case SUBOPTIMAL:
return "SUBOPTIMAL"
case INFEASIBLE:
return "INFEASIBLE"
case UNBOUNDED:
return "UNBOUNDED"
case DEGENERATE:
return "DEGENERATE"
case NUMFAILURE:
return "NUMFAILURE"
case USERABORT:
return "USERABORT"
case TIMEOUT:
return "TIMEOUT"
case PROCFAIL:
return "PROCFAIL"
case PROCBREAK:
return "PROCBREAK"
case FEASFOUND:
return "FEASFOUND"
case NOFEASFOUND:
return "NOFEASFOUND"
default:
return fmt.Sprintf("SolutionType(%d)", int(t))
}
}
// Solve the linear (or mixed integer) program and return the solution type
// See http://lpsolve.sourceforge.net/5.5/solve.htm
func (l *LP) Solve() SolutionType {
return SolutionType(C.solve(l.ptr))
}
// WriteToStdout writes a representation of the linear program to standard out
// See http://lpsolve.sourceforge.net/5.5/write_lp.htm
func (l *LP) WriteToStdout() {
C.write_LP(l.ptr, C.stdout)
}
// WriteToString returns a representation of the linear program as a string
func (l *LP) WriteToString() string {
cstr := C.write_lp_to_str(l.ptr)
str := C.GoString(cstr)
C.free(unsafe.Pointer(cstr))
return str
}
// Objective gives the value of the objective function of the solved linear
// program.
// See http://lpsolve.sourceforge.net/5.5/get_objective.htm
func (l *LP) Objective() float64 {
return float64(C.get_objective(l.ptr))
}
// Variables return the values for the variables of the solved linear program
// See http://lpsolve.sourceforge.net/5.5/get_variables.htm
func (l *LP) Variables() []float64 {
numCols := int(C.get_Ncolumns(l.ptr))
cRow := make([]C.double, numCols)
C.get_variables(l.ptr, &cRow[0])
row := make([]float64, numCols)
for i := 0; i < numCols; i++ {
row[i] = float64(cRow[i])
}
return row
}