-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathmain_train.py
224 lines (188 loc) · 9.07 KB
/
main_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import os
from os.path import join
import random
from loguru import logger
import torch
import torch.nn as nn
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM, Trainer, \
BitsAndBytesConfig, HfArgumentParser, set_seed
from peft import LoraConfig, TaskType, get_peft_model, prepare_model_for_kbit_training, cast_mixed_precision_params
from train_args import sft_TrainArgument
import bitsandbytes as bnb
from utils.data_process import MultiRoundDataProcess
from utils.data_collator import SftDataCollator
from train_args.common_args import CommonArgs
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def initial_args():
parser = HfArgumentParser((CommonArgs,))
args, remaining_args = parser.parse_args_into_dataclasses(return_remaining_strings=True)
if args.train_args_path == "sft_args":
parser_b = HfArgumentParser((sft_TrainArgument,))
train_args, = parser_b.parse_args_into_dataclasses(args=remaining_args)
else:
raise ValueError("Invalid train_args_path choice")
if not os.path.exists(train_args.output_dir):
os.mkdir(train_args.output_dir)
set_seed(train_args.seed)
assert sum([train_args.fp16, train_args.bf16]) == 1, "only one of fp16 and bf16 can be True"
return args, train_args
def find_all_linear_names(model, train_mode):
"""
找出所有全连接层,为所有全连接添加adapter
"""
assert train_mode in ['lora', 'qlora']
cls = bnb.nn.Linear4bit if train_mode == 'qlora' else nn.Linear
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[-1])
if 'lm_head' in lora_module_names: # needed for 16-bit
lora_module_names.remove('lm_head')
lora_module_names = list(lora_module_names)
return lora_module_names
def create_tokenizer(args):
config = AutoConfig.from_pretrained(args.model_name_or_path, trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, trust_remote_code=True,
# llama不支持fast
use_fast=False if config.model_type == 'llama' else True
)
# QWenTokenizer比较特殊,pad_token_id、bos_token_id、eos_token_id均为None。eod_id对应的token为<|endoftext|>
if tokenizer.__class__.__name__ == 'QWenTokenizer':
tokenizer.pad_token_id = tokenizer.eod_id
tokenizer.bos_token_id = tokenizer.eod_id
tokenizer.eos_token_id = tokenizer.eod_id
if tokenizer.bos_token is None: # qwen没有bos_token,要设置一下,不然dpo train时会报错。
tokenizer.add_special_tokens({"bos_token": tokenizer.eos_token})
tokenizer.bos_token_id = tokenizer.eos_token_id
assert tokenizer.pad_token_id is not None, "pad_token_id should not be None"
assert tokenizer.eos_token_id is not None, "eos_token_id should not be None"
return tokenizer
def create_model(args, train_args):
target_modules = None
# 确定训练的精度
torch_dtype = torch.bfloat16 if train_args.bf16 else torch.float32
model_kwargs = dict(
trust_remote_code=True,
torch_dtype=torch_dtype,
use_cache=False if train_args.gradient_checkpointing else True, # The cache is only used for generation,
# fix bug
# device_map='auto'
)
def load_model(model_kwargs):
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, **model_kwargs)
return model
if args.train_mode == 'qlora':
# 基本的qlora可以直接在加载模型中设置参数,也可以通过BitsAndBytesConfig进行一些设置
quantization_config = BitsAndBytesConfig(
load_in_4bit=True, # 是否在4位精度下加载模型。如果设置为True,则在4位精度下加载模型。
bnb_4bit_compute_dtype=torch.float16 if train_args.fp16 else torch.bfloat16, # 4位精度计算的数据类型。
bnb_4bit_quant_type="nf4", # 4位精度量化的类型。这里设置为"nf4",表示使用nf4量化类型。
bnb_4bit_use_double_quant=True # 是否使用双精度量化。如果设置为True,则使用双精度量化。
)
model_kwargs.update(quantization_config=quantization_config)
model = load_model(model_kwargs)
if args.task_type in ['pretrain', 'sft']: # 如果是dpo的话就不执行
# QLoRA: casts all the non int8 modules to full precision (fp32) for stability
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=train_args.gradient_checkpointing)
elif args.train_mode == 'lora':
model = load_model(model_kwargs)
if hasattr(model, 'enable_input_require_grads'):
# 不加可能报错
model.enable_input_require_grads()
elif args.train_mode == 'full':
model = load_model(model_kwargs)
if args.train_mode == 'full':
peft_config = None
else:
# peft_config配置
target_modules = find_all_linear_names(model, args.train_mode)
peft_config = LoraConfig(
r=args.lora_rank,
lora_alpha=args.lora_alpha,
target_modules=target_modules,
lora_dropout=args.lora_dropout,
task_type=TaskType.CAUSAL_LM,
use_dora=args.use_dora
)
# peft_model 配置
if args.train_mode in ['lora', 'qlora'] and args.task_type in ['pretrain', 'sft']:
model = get_peft_model(model, peft_config)
if not train_args.bf16:
cast_mixed_precision_params(model, dtype=torch.float16)
# logger.info(f'memory footprint of model: {model.get_memory_footprint() / (1024 * 1024 * 1024)} GB')
# model.print_trainable_parameters()
return {
'model': model,
'peft_config': peft_config,
'target_modules': target_modules
}
def load_sft_dataset(args, tokenizer):
train_dataset = MultiRoundDataProcess(args.train_data_path, tokenizer, args.max_len, args.auto_adapt)
return train_dataset
def create_trainer(args, train_args):
tokenizer = create_tokenizer(args)
model_dict = create_model(args, train_args)
model = model_dict['model']
# peft_config = model_dict['peft_config']
if args.task_type == 'sft':
train_dataset = load_sft_dataset(args, tokenizer)
data_collator = SftDataCollator(tokenizer, args.max_len)
elif args.task_type == 'pretrain':
pass
log_out(args, train_args, tokenizer, train_dataset, model, model_dict['target_modules'])
# sft or pretrain
if args.task_type == 'sft':
trainer = Trainer(
model=model,
args=train_args,
train_dataset=train_dataset,
data_collator=data_collator
)
elif args.task_type == 'pretrain':
pass
return trainer
def log_out(args, train_args, tokenizer, train_dataset, model, target_modules):
total = sum(p.numel() for p in model.parameters())
logger.add(join(train_args.output_dir, 'train.log'))
if train_args.local_rank == 0:
logger.info("train_args:{}".format(train_args))
logger.info("common_args:{}".format(args))
logger.info(f'vocab_size of tokenizer: {tokenizer.vocab_size}')
logger.info(f'Loading model from base model: {args.model_name_or_path}')
logger.info("Total model params: %.2fM" % (total / 1e6))
logger.info(f'memory footprint of model: {model.get_memory_footprint() / (1024 * 1024 * 1024)} GB')
trainable_params, all_param = model.get_nb_trainable_parameters()
logger.info(
f"trainable params: {trainable_params:,d} || "
f"all params: {all_param:,d} || "
f"trainable%: {100 * trainable_params / all_param:.4f}"
)
logger.info(f'Train model with {args.task_type} task')
logger.info(f'Train model with {args.train_mode}')
logger.info(f'LoRA target module names: {target_modules}')
logger.info(f'Loading data: {args.train_data_path}')
logger.info(f"Training dataset samples:{len(train_dataset)}")
for index in random.sample(range(len(train_dataset)), 3):
logger.info(
f"Sample {index} of the training set: {train_dataset[index]['input_ids']}, {train_dataset[index]['target_mask']}.")
logger.info(
f"Sample {index} of the training set: {tokenizer.decode(list(train_dataset[index]['input_ids']))}.")
def main():
args, train_args = initial_args()
# 加载trainer
trainer = create_trainer(args, train_args)
# 开始训练
if train_args.local_rank == 0:
logger.info("*** starting training ***")
train_result = trainer.train()
# Transformers 更新了自动保存最后训练结果
# final_save_path = join(train_args.output_dir)
# trainer.save_model(final_save_path)
# 保存训练指标
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
if __name__ == "__main__":
main()