-
Notifications
You must be signed in to change notification settings - Fork 14
/
transpose_bench.nim
817 lines (677 loc) · 22.9 KB
/
transpose_bench.nim
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
# Apache v2 License
# Mamy Ratsimbazafy
# ##########################################
# Benchmarking tools
import random, times, stats, strformat, math, sequtils
proc warmup() =
# Warmup - make sure cpu is on max perf
let start = epochTime()
var foo = 123
for i in 0 ..< 300_000_000:
foo += i*i mod 456
foo = foo mod 789
# Compiler shouldn't optimize away the results as cpuTime rely on sideeffects
let stop = epochTime()
echo &"Warmup: {stop - start:>4.4f} s, result {foo} (displayed to avoid compiler optimizing warmup away)"
template printStats(name: string, output: openarray) {.dirty.} =
echo "\n" & name
echo &"Collected {stats.n} samples in {global_stop - global_start:>4.3f} seconds"
echo &"Average time: {stats.mean * 1000 :>4.3f} ms"
echo &"Stddev time: {stats.standardDeviationS * 1000 :>4.3f} ms"
echo &"Min time: {stats.min * 1000 :>4.3f} ms"
echo &"Max time: {stats.max * 1000 :>4.3f} ms"
echo &"Perf: {req_ops.float / stats.mean / float(10^9):>4.3f} GMEMOPs/s"
echo "\nDisplay output[1] to make sure it's not optimized away"
echo output[1] # Prevents compiler from optimizing stuff away
template bench(name: string, initialisation, body: untyped) {.dirty.}=
block: # Actual bench
var stats: RunningStat
let global_start = epochTime()
for _ in 0 ..< nb_samples:
initialisation
let start = epochTime()
body
let stop = epochTime()
stats.push stop - start
let global_stop = epochTime()
printStats(name, output)
# #############################################
# Params
import
./transpose_common, # ../blas,
./transpose_naive_tensor,
./transpose_divide_conquer,
../../laser/dynamic_stack_arrays,
../../laser/compiler_optim_hints
const
M = 4000
N = 2000
NbSamples = 250
const
ashape: MatrixShape = (M, N)
let req_ops = M*N
let req_bytes = sizeof(float32) * M*N
let out_shape: MatrixShape = (N, M)
let out_size = out_shape.M * out_shape.N
# #############################################
# TODO: could not import: cblas_somatcopy
# proc benchBLAS(a: seq[float32], nb_samples: int) =
# var output = newSeq[float32](out_size)
# bench("BLAS omatcopy benchmark"):
# # Initialisation, not measured apart for the "Collected n samples in ... seconds"
# zeroMem(output[0].addr, out_size) # We zero memory between computation
# do:
# # Main work
# omatcopy(
# rowMajor, noTranspose,
# M, N, 1,
# a[0].unsafeaddr, N,
# output[0].unsafeAddr, N,
# )
proc benchNaive(a: seq[float32], nb_samples: int) =
var output = newSeq[float32](out_size)
withCompilerOptimHints()
let pa{.restrict.} = cast[ptr UncheckedArray[float32]](a[0].unsafeAddr)
let po{.restrict.} = cast[ptr UncheckedArray[float32]](output[0].addr)
bench("Naive transpose"):
discard
do:
for i in `||`(0, M-1):
for j in `||`(0, N-1, "simd"): # This only add "#pragma omp simd"
po[i+j*M] = pa[j+i*N]
# echo a.toString((M, N))
# echo output.toString((N, M))
proc benchNaiveExchanged(a: seq[float32], nb_samples: int) =
var output = newSeq[float32](out_size)
withCompilerOptimHints()
let pa{.restrict.} = cast[ptr UncheckedArray[float32]](a[0].unsafeAddr)
let po{.restrict.} = cast[ptr UncheckedArray[float32]](output[0].addr)
bench("Naive transpose - input row iteration"):
discard
do:
for j in `||`(0, N-1):
for i in `||`(0, M-1, "simd"): # This only add "#pragma omp simd"
po[i+j*M] = pa[j+i*N]
# echo a.toString((M, N))
# echo output.toString((N, M))
proc benchForEachStrided(a: seq[float32], nb_samples: int) =
var output = newSeq[float32](out_size)
var ti = a.buildTensorView(M, N)
ti.shape = ti.shape.reversed()
ti.strides = ti.strides.reversed()
var to = output.buildTensorView(N, M)
bench("Laser ForEachStrided"):
# Initialisation, not measured apart for the "Collected n samples in ... seconds"
zeroMem(output[0].addr, out_size) # We zero memory between computation
do:
# Main work
transpose_naive_forEach(to, ti)
# echo a.toString((M, N))
# echo output.toString((N, M))
proc benchCollapsed(a: seq[float32], nb_samples: int) =
var output = newSeq[float32](out_size)
withCompilerOptimHints()
let pa{.restrict.} = a[0].unsafeAddr
let po{.restrict.} = output[0].addr
bench("Collapsed OpenMP"):
discard
do:
{.emit: """
#pragma omp parallel for simd collapse(2)
for (int i = 0; i < `M`; i++)
for (int j = 0; j < `N`; j++)
`po`[i+j*`M`] = `pa`[j+i*`N`];
""".}
# echo a.toString((M, N))
# echo output.toString((N, M))
proc benchCollapsedExchanged(a: seq[float32], nb_samples: int) =
var output = newSeq[float32](out_size)
withCompilerOptimHints()
let pa{.restrict.} = a[0].unsafeAddr
let po{.restrict.} = output[0].addr
bench("Collapsed OpenMP - input row iteration"):
discard
do:
{.emit: """
#pragma omp parallel for simd collapse(2)
for (int j = 0; j < `N`; j++)
for (int i = 0; i < `M`; i++)
`po`[i+j*`M`] = `pa`[j+i*`N`];
""".}
# echo a.toString((M, N))
# echo output.toString((N, M))
proc benchCacheBlocking(a: seq[float32], nb_samples: int) =
var output = newSeq[float32](out_size)
withCompilerOptimHints()
let pa{.restrict.} = a[0].unsafeAddr
let po{.restrict.} = output[0].addr
const blck = 64
bench("Cache blocking"):
discard
do:
{.emit: """
// No min function in C ...
#define min(a,b) (((a)<(b))?(a):(b))
#pragma omp parallel for
for (int i = 0; i < `M`; i+=`blck`)
for (int j = 0; j < `N`; ++j)
#pragma omp simd
for (int ii = i; ii < min(i+`blck`,`M`); ++ii)
`po`[ii+j*`M`] = `pa`[j+ii*`N`];
""".}
# echo a.toString((M, N))
# echo output.toString((N, M))
proc benchCacheBlockingExchanged(a: seq[float32], nb_samples: int) =
var output = newSeq[float32](out_size)
withCompilerOptimHints()
let pa{.restrict.} = a[0].unsafeAddr
let po{.restrict.} = output[0].addr
const blck = 64
bench("Cache blocking - input row iteration"):
discard
do:
{.emit: """
// No min function in C ...
#define min(a,b) (((a)<(b))?(a):(b))
#pragma omp parallel for
for (int j = 0; j < `N`; j+=`blck`)
for (int i = 0; i < `M`; ++i)
#pragma omp simd
for (int jj = j; jj < min(j+`blck`,`N`); ++jj)
`po`[i+(jj)*`M`] = `pa`[jj+i*`N`];
""".}
# echo a.toString((M, N))
# echo output.toString((N, M))
proc bench2Dtiling(a: seq[float32], nb_samples: int) =
var output = newSeq[float32](out_size)
withCompilerOptimHints()
let pa{.restrict.} = a[0].unsafeAddr
let po{.restrict.} = output[0].addr
const blck = 128
bench("2D Tiling"):
discard
do:
{.emit: """
// No min function in C ...
#define min(a,b) (((a)<(b))?(a):(b))
#pragma omp parallel for collapse(2)
for (int i = 0; i < `M`; i+=`blck`)
for (int j = 0; j < `N`; j+=`blck`)
for (int ii = i; ii<i+`blck` && ii<`M`; ii++)
#pragma omp simd
for (int jj = j; jj<min(j+`blck`,`N`); jj++)
`po`[ii+jj*`M`] = `pa`[jj+ii*`N`];
""".}
# echo a.toString((M, N))
# echo output.toString((N, M))
proc bench2DtilingExchanged(a: seq[float32], nb_samples: int) =
var output = newSeq[float32](out_size)
withCompilerOptimHints()
let pa{.restrict.} = a[0].unsafeAddr
let po{.restrict.} = output[0].addr
const blck = 64
bench("2D Tiling - input row iteration"):
discard
do:
{.emit: """
#define min(a,b) (((a)<(b))?(a):(b))
#pragma omp parallel for collapse(2)
for (int j = 0; j < `N`; j+=`blck`)
for (int i = 0; i < `M`; i+=`blck`)
for (int jj = j; jj<j+`blck` && jj<`N`; jj++)
#pragma omp simd
for (int ii = i; ii<min(i+`blck`,`M`); ii++)
`po`[ii+jj*`M`] = `pa`[jj+ii*`N`];
""".}
# echo a.toString((M, N))
# echo output.toString((N, M))
proc benchCacheBlockingPrefetch(a: seq[float32], nb_samples: int) =
var output = newSeq[float32](out_size)
withCompilerOptimHints()
let pa{.restrict.} = a[0].unsafeAddr
let po{.restrict.} = output[0].addr
const blck = 32
# This seems to trigger constant and loop folding
# and does not seem to be replicable if not defined inline
bench("Cache blocking with Prefetch"):
discard
do:
{.emit: """
#pragma omp parallel for
for (int i = 0; i < `M`; i+=`blck`)
for (int j = 0; j < `N`; ++j)
#pragma omp simd
for (int ii = i; ii<min(i+`blck`,`M`); ii++)
`po`[ii+j*`M`] = `pa`[j+ii*`N`];
__builtin_prefetch(&`pa`[(i+1)*`N`], 0, 1); // Prefetch read with low temporal locality
""".}
# echo a.toString((M, N))
# echo output.toString((N, M))
proc bench2DtilingExchangedPrefetch(a: seq[float32], nb_samples: int) =
var output = newSeq[float32](out_size)
withCompilerOptimHints()
let pa{.restrict.} = a[0].unsafeAddr
let po{.restrict.} = output[0].addr
const blck = 32
bench("2D Tiling + Prefetch - input row iteration"):
discard
do:
{.emit: """
#pragma omp parallel for collapse(2)
for (int j = 0; j < `N`; j+=`blck`)
for (int i = 0; i < `M`; i+=`blck`)
for (int jj = j; jj<j+`blck` && jj<`N`; jj++)
#pragma omp simd
for (int ii = i; ii<min(i+`blck`,`M`); ii++)
`po`[ii+jj*`M`] = `pa`[jj+ii*`N`];
__builtin_prefetch(&`pa`[(i+1)*`N`], 0, 1); // Prefetch read with low temporal locality
""".}
# echo a.toString((M, N))
# echo output.toString((N, M))
import ../../laser/primitives/swapaxes
proc benchProdImpl(a: seq[float32], nb_samples: int) =
var output = newSeq[float32](out_size)
bench("Production implementation"):
discard
do:
transpose2D_copy(output[0].addr, a[0].unsafeAddr, M, N)
# TODO buggy
# proc benchCacheOblivious(a: seq[float32], nb_samples: int) =
# var output = newSeq[float32](out_size)
#
# let a_ptr{.restrict.} = cast[ptr UncheckedArray[float32]](a.unsafeAddr)
# let o_ptr{.restrict.} = cast[ptr UncheckedArray[float32]](output.addr)
#
# bench("Cache oblivious recursive"):
# discard
# do:
# # Main work
# transpose_cache_oblivious(o_ptr, a_ptr, M, N)
# # echo a.toString((M, N))
# # echo output.toString((N, M))
# ###########################################
when defined(fast_math):
{.passC:"-ffast-math".}
when defined(march_native):
{.passC:"-march=native".}
when isMainModule:
randomize(42) # For reproducibility
warmup()
echo ""
echo "A matrix shape: " & $ashape
echo "Output shape: " & $out_shape
echo &"Required number of operations: {req_ops.float / float(10^6):>9.3f} millions"
echo &"Required bytes: {req_bytes.float / float(10^6):>9.3f} MB"
echo &"Arithmetic intensity: {req_ops.float / req_bytes.float:>9.3f} FLOP/byte"
block:
let a = newSeqWith(M*N, float32 rand(1.0))
# benchBLAS(a, NbSamples)
benchForEachStrided(a, NbSamples)
benchNaive(a, NbSamples)
benchNaiveExchanged(a, NbSamples)
benchCollapsed(a, NbSamples)
benchCollapsedExchanged(a, NbSamples)
benchCacheBlocking(a, NbSamples)
benchCacheBlockingExchanged(a, NbSamples)
bench2Dtiling(a, NbSamples)
bench2DtilingExchanged(a, NbSamples)
benchCacheBlockingPrefetch(a, NbSamples)
bench2DtilingExchangedPrefetch(a, NbSamples)
benchProdImpl(a, NbSamples)
# benchCacheOblivious(a, NbSamples)
## With OpenMP
## Note - OpenMP is faster when iterating on input row in inner loop
## but in serial case its input col in inner loop that is faster
## Prefetch helps a lot in serial case but doesn't at all with OpenMP
## In serial mode, prefetch hints the compiler to unroll the loop
## as the bounds are known at compile-time
########################################################################
# OpenMP
# Warmup: 1.7140 s, result 224 (displayed to avoid compiler optimizing warmup away)
# A matrix shape: (M: 4000, N: 2000)
# Output shape: (M: 2000, N: 4000)
# Required number of operations: 8.000 millions
# Required bytes: 32.000 MB
# Arithmetic intensity: 0.250 FLOP/byte
# Laser ForEachStrided
# Collected 250 samples in 6.334 seconds
# Average time: 24.745 ms
# Stddev time: 2.511 ms
# Min time: 21.225 ms
# Max time: 35.859 ms
# Perf: 0.323 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Naive transpose
# Collected 250 samples in 4.781 seconds
# Average time: 19.121 ms
# Stddev time: 1.315 ms
# Min time: 15.100 ms
# Max time: 30.852 ms
# Perf: 0.418 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Naive transpose - input row iteration
# Collected 250 samples in 5.708 seconds
# Average time: 22.828 ms
# Stddev time: 1.938 ms
# Min time: 18.554 ms
# Max time: 36.763 ms
# Perf: 0.350 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Collapsed OpenMP
# Collected 250 samples in 4.806 seconds
# Average time: 19.223 ms
# Stddev time: 1.576 ms
# Min time: 16.045 ms
# Max time: 34.059 ms
# Perf: 0.416 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Collapsed OpenMP - input row iteration
# Collected 250 samples in 6.219 seconds
# Average time: 24.875 ms
# Stddev time: 1.895 ms
# Min time: 20.163 ms
# Max time: 32.635 ms
# Perf: 0.322 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Cache blocking
# Collected 250 samples in 2.307 seconds
# Average time: 9.225 ms
# Stddev time: 0.939 ms
# Min time: 7.918 ms
# Max time: 17.105 ms
# Perf: 0.867 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Cache blocking - input row iteration
# Collected 250 samples in 2.873 seconds
# Average time: 11.490 ms
# Stddev time: 1.136 ms
# Min time: 9.738 ms
# Max time: 20.180 ms
# Perf: 0.696 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# 2D Tiling
# Collected 250 samples in 2.021 seconds
# Average time: 8.081 ms
# Stddev time: 0.884 ms
# Min time: 6.884 ms
# Max time: 13.235 ms
# Perf: 0.990 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# 2D Tiling - input row iteration
# Collected 250 samples in 2.038 seconds
# Average time: 8.151 ms
# Stddev time: 0.810 ms
# Min time: 6.845 ms
# Max time: 14.160 ms
# Perf: 0.981 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Cache blocking with Prefetch
# Collected 250 samples in 2.392 seconds
# Average time: 9.565 ms
# Stddev time: 1.150 ms
# Min time: 7.705 ms
# Max time: 17.514 ms
# Perf: 0.836 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# 2D Tiling + Prefetch - input row iteration
# Collected 250 samples in 2.299 seconds
# Average time: 9.193 ms
# Stddev time: 1.517 ms
# Min time: 7.217 ms
# Max time: 20.560 ms
# Perf: 0.870 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Production implementation
# Collected 250 samples in 2.206 seconds
# Average time: 8.824 ms
# Stddev time: 0.943 ms
# Min time: 7.388 ms
# Max time: 15.261 ms
# Perf: 0.907 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
########################################################################
# Serial
########################################################################
# The cache blocking + prefetch seems to trigger constant and loop folding
# and does not seem to be replicable if not defined inline
# Warmup: 1.1947 s, result 224 (displayed to avoid compiler optimizing warmup away)
# A matrix shape: (M: 4000, N: 2000)
# Output shape: (M: 2000, N: 4000)
# Required number of operations: 8.000 millions
# Required bytes: 32.000 MB
# Arithmetic intensity: 0.250 FLOP/byte
# Laser ForEachStrided
# Collected 250 samples in 9.176 seconds
# Average time: 36.125 ms
# Stddev time: 3.632 ms
# Min time: 34.089 ms
# Max time: 77.802 ms
# Perf: 0.221 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Naive transpose
# Collected 250 samples in 7.090 seconds
# Average time: 28.360 ms
# Stddev time: 1.315 ms
# Min time: 26.625 ms
# Max time: 37.690 ms
# Perf: 0.282 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Naive transpose - input row iteration
# Collected 250 samples in 8.863 seconds
# Average time: 35.451 ms
# Stddev time: 1.025 ms
# Min time: 34.050 ms
# Max time: 43.612 ms
# Perf: 0.226 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Collapsed OpenMP
# Collected 250 samples in 7.342 seconds
# Average time: 29.367 ms
# Stddev time: 2.905 ms
# Min time: 26.573 ms
# Max time: 46.812 ms
# Perf: 0.272 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Collapsed OpenMP - input row iteration
# Collected 250 samples in 8.934 seconds
# Average time: 35.738 ms
# Stddev time: 1.543 ms
# Min time: 34.098 ms
# Max time: 46.705 ms
# Perf: 0.224 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Cache blocking
# Collected 250 samples in 2.940 seconds
# Average time: 11.758 ms
# Stddev time: 0.754 ms
# Min time: 10.696 ms
# Max time: 18.864 ms
# Perf: 0.680 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Cache blocking - input row iteration
# Collected 250 samples in 4.878 seconds
# Average time: 19.513 ms
# Stddev time: 1.021 ms
# Min time: 18.702 ms
# Max time: 27.463 ms
# Perf: 0.410 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# 2D Tiling
# Collected 250 samples in 3.225 seconds
# Average time: 12.901 ms
# Stddev time: 0.747 ms
# Min time: 12.030 ms
# Max time: 18.211 ms
# Perf: 0.620 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# 2D Tiling - input row iteration
# Collected 250 samples in 3.194 seconds
# Average time: 12.774 ms
# Stddev time: 0.497 ms
# Min time: 11.603 ms
# Max time: 17.648 ms
# Perf: 0.626 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Cache blocking with Prefetch
# Collected 250 samples in 2.595 seconds
# Average time: 10.381 ms
# Stddev time: 0.830 ms
# Min time: 9.449 ms
# Max time: 18.195 ms
# Perf: 0.771 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# 2D Tiling + Prefetch - input row iteration
# Collected 250 samples in 2.576 seconds
# Average time: 10.306 ms
# Stddev time: 0.835 ms
# Min time: 9.241 ms
# Max time: 17.958 ms
# Perf: 0.776 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Production implementation
# Collected 250 samples in 3.403 seconds
# Average time: 13.613 ms
# Stddev time: 0.791 ms
# Min time: 12.026 ms
# Max time: 20.408 ms
# Perf: 0.588 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# kami-no-itte:laser tesuji$ ./build/transpose_bench_serial
# Warmup: 1.1977 s, result 224 (displayed to avoid compiler optimizing warmup away)
# A matrix shape: (M: 4000, N: 2000)
# Output shape: (M: 2000, N: 4000)
# Required number of operations: 8.000 millions
# Required bytes: 32.000 MB
# Arithmetic intensity: 0.250 FLOP/byte
# Laser ForEachStrided
# Collected 250 samples in 8.877 seconds
# Average time: 34.944 ms
# Stddev time: 0.836 ms
# Min time: 34.210 ms
# Max time: 40.388 ms
# Perf: 0.229 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Naive transpose
# Collected 250 samples in 7.098 seconds
# Average time: 28.390 ms
# Stddev time: 1.747 ms
# Min time: 26.535 ms
# Max time: 44.813 ms
# Perf: 0.282 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Naive transpose - input row iteration
# Collected 250 samples in 8.873 seconds
# Average time: 35.491 ms
# Stddev time: 0.821 ms
# Min time: 34.104 ms
# Max time: 41.378 ms
# Perf: 0.225 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Collapsed OpenMP
# Collected 250 samples in 7.064 seconds
# Average time: 28.257 ms
# Stddev time: 1.202 ms
# Min time: 26.525 ms
# Max time: 36.251 ms
# Perf: 0.283 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Collapsed OpenMP - input row iteration
# Collected 250 samples in 9.003 seconds
# Average time: 36.012 ms
# Stddev time: 1.561 ms
# Min time: 34.149 ms
# Max time: 50.441 ms
# Perf: 0.222 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Cache blocking
# Collected 250 samples in 2.900 seconds
# Average time: 11.601 ms
# Stddev time: 0.630 ms
# Min time: 10.797 ms
# Max time: 18.948 ms
# Perf: 0.690 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Cache blocking - input row iteration
# Collected 250 samples in 4.911 seconds
# Average time: 19.644 ms
# Stddev time: 1.005 ms
# Min time: 18.644 ms
# Max time: 27.572 ms
# Perf: 0.407 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# 2D Tiling
# Collected 250 samples in 3.232 seconds
# Average time: 12.927 ms
# Stddev time: 0.782 ms
# Min time: 12.036 ms
# Max time: 19.736 ms
# Perf: 0.619 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# 2D Tiling - input row iteration
# Collected 250 samples in 3.197 seconds
# Average time: 12.786 ms
# Stddev time: 0.652 ms
# Min time: 11.448 ms
# Max time: 19.202 ms
# Perf: 0.626 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Cache blocking with Prefetch
# Collected 250 samples in 2.617 seconds
# Average time: 10.468 ms
# Stddev time: 0.874 ms
# Min time: 9.438 ms
# Max time: 19.032 ms
# Perf: 0.764 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# 2D Tiling + Prefetch - input row iteration
# Collected 250 samples in 2.630 seconds
# Average time: 10.520 ms
# Stddev time: 1.414 ms
# Min time: 9.234 ms
# Max time: 22.264 ms
# Perf: 0.760 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318
# Production implementation
# Collected 250 samples in 3.086 seconds
# Average time: 12.345 ms
# Stddev time: 0.926 ms
# Min time: 10.753 ms
# Max time: 19.060 ms
# Perf: 0.648 GMEMOPs/s
# Display output[1] to make sure it's not optimized away
# 0.7808474898338318