-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathzae_on_cifarpatches.py
100 lines (77 loc) · 3.92 KB
/
zae_on_cifarpatches.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import numpy
import numpy.random
import pylab
from dispims_color import dispims_color
import zae
#import zaedropout as zae
import train
import theano
from theano.tensor.shared_randomstreams import RandomStreams
rng = numpy.random.RandomState(1)
theano_rng = RandomStreams(1)
SMALL = 0.001
patchsize = 10
numfeatures = 255
import os
HOME = os.environ['HOME']
CIFARDATADIR = HOME+'/research/data/cifar/cifar-10-batches-py'
def crop_patches_color(image, keypoints, patchsize):
patches = numpy.zeros((len(keypoints), 3*patchsize**2))
for i, k in enumerate(keypoints):
patches[i, :] = image[k[0]-patchsize/2:k[0]+patchsize/2, k[1]-patchsize/2:k[1]+patchsize/2,:].flatten()
return patches
def pca(data, var_fraction, whiten=True):
""" principal components analysis of data (columnwise in array data), retaining as many components as required to retain var_fraction of the variance
"""
from numpy.linalg import eigh
u, v = eigh(numpy.cov(data, rowvar=0, bias=1))
v = v[:, numpy.argsort(u)[::-1]]
u.sort()
u = u[::-1]
u = u[u.cumsum()<=(u.sum()*var_fraction)]
numprincomps = u.shape[0]
u[u<SMALL] = SMALL
if whiten:
backward_mapping = ((u**(-0.5))[:numprincomps][numpy.newaxis,:]*v[:,:numprincomps]).T
forward_mapping = (u**0.5)[:numprincomps][numpy.newaxis,:]*v[:,:numprincomps]
else:
backward_mapping = v[:,:numprincomps].T
forward_mapping = v[:,:numprincomps]
return backward_mapping, forward_mapping, numpy.dot(v[:,:numprincomps], backward_mapping), numpy.dot(forward_mapping, v[:,:numprincomps].T)
#GET SOME CIFAR IMAGES
trainimages = (numpy.concatenate([(numpy.load(CIFARDATADIR+'/data_batch_'+b)['data']) for b in ["1"]], 0).reshape(-1,3,32,32)/255.).astype("float32")[:1000]
#CROP PATCHES
print "cropping patches"
trainpatches = numpy.concatenate([crop_patches_color(im.reshape(3, 32, 32).transpose(1,2,0), numpy.array([numpy.random.randint(patchsize/2, 32-patchsize/2, 400), numpy.random.randint(patchsize/2, 32-patchsize/2, 400)]).T, patchsize) for im in trainimages])
R = rng.permutation(trainpatches.shape[0])
trainpatches = trainpatches[R, :]
print "numpatches: ", trainpatches.shape[0]
print "done"
#LEARN WHITENING MATRICES
print "whitening"
meanstd = trainpatches.std()
trainpatches -= trainpatches.mean(1)[:,None]
trainpatches /= trainpatches.std(1)[:,None] + 0.1 * meanstd
trainpatches_mean = trainpatches.mean(0)[None,:]
trainpatches_std = trainpatches.std(0)[None,:]
trainpatches -= trainpatches_mean
trainpatches /= trainpatches_std + 0.1 * meanstd
pca_backward, pca_forward, zca_backward, zca_forward = pca(trainpatches, 0.9, whiten=True)
trainpatches_whitened = numpy.dot(trainpatches, pca_backward.T).astype("float32")
trainpatches_theano = theano.shared(trainpatches_whitened)
print "done"
#INSTANTIATE THE ZERO-BIAS AUTOENCODER
model = zae.Zae(numvis=trainpatches_whitened.shape[1], numhid=numfeatures, vistype="real", init_features=0.1*trainpatches_whitened[:numfeatures].T, selectionthreshold=1.0, weightcost=0.0)
assert False, "preprocessing is done, may train now"
#DO SOME STEPS WITH SMALL LEARNING RATE TO MAKE SURE THE INITIALIZATION IS IN A REASONABLE RANGE
trainer = train.GraddescentMinibatch(model, trainpatches_theano, 100, learningrate=0.0001, momentum=0.9)
trainer.step(); trainer.step(); trainer.step()
#TRAIN THE MODEL FOR REAL, AND SHOW FILTERS
trainer = train.GraddescentMinibatch(model, trainpatches_theano, 100, learningrate=0.01, momentum=0.9)
#trainer = graddescent_rewrite.SGD_Trainer(model, trainpatches_whitened, batchsize=128, learningrate=0.1, momentum=0.9, loadsize=30000, gradient_clip_threshold=5.0)
for epoch in xrange(100):
trainer.step()
if epoch % 10 == 0 and epoch > 0:
#trainer.set_learningrate(trainer.learningrate*0.8)
dispims_color(numpy.dot(model.W.get_value().T, pca_forward.T).reshape(-1, patchsize, patchsize, 3), 1)
pylab.draw(); pylab.show()