-
Notifications
You must be signed in to change notification settings - Fork 116
/
Copy pathutils.py
executable file
·195 lines (166 loc) · 6.59 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import os
import dill as pickle
from pathlib import Path
import random
import numpy as np
import pandas as pd
from math import floor
from pyknon.genmidi import Midi
from pyknon.music import NoteSeq, Note
import music21
import random
from fastai.learner import *
from fastai.rnn_reg import *
from fastai.rnn_train import *
from fastai.nlp import *
from fastai.lm_rnn import *
import dill as pickle
def create_paths():
PATHS={}
PATHS['data']=Path('./data/')
PATHS['critic_data']=Path('./critic_data/')
PATHS['composer_data']=Path('./composer_data/')
PATHS['notewise_example_data']=PATHS['data']/'notewise_example_data'
PATHS['chordwise_example_data']=PATHS['data']/'chordwise_example_data'
PATHS['chamber_example_data']=PATHS['data']/'chamber_example_data'
PATHS['models']=Path('./models/')
PATHS['generator']=PATHS['models']/'generator'
PATHS['critic']=PATHS['models']/'critic'
PATHS['composer']=PATHS['models']/'composer'
PATHS['output']=PATHS['data']/'output'
for k in PATHS.keys():
PATHS[k].mkdir(parents=True, exist_ok=True)
return PATHS
def train_and_save(learner, lr, epochs, fname, metrics=None):
print("\nTraining "+str(fname))
learner.fit(lr, 1, wds=1e-6, cycle_len=epochs, use_clr=(32,10), metrics=metrics)
print("\nSaving "+str(fname))
torch.save(learner.model.state_dict(), fname)
def load_pretrained_model(model_to_load, PATHS, training, bs):
params=pickle.load(open(f'{PATHS["generator"]}/{model_to_load}_params.pkl','rb'))
TEXT=pickle.load(open(f'{PATHS["generator"]}/{model_to_load}_text.pkl','rb'))
lm = LanguageModel(to_gpu(get_language_model(params["n_tok"], params["em_sz"], params["nh"],
params["nl"], params["pad"])))
mod_name=model_to_load+"_"+training+".pth"
lm.model.load_state_dict(torch.load(PATHS["generator"]/mod_name))
lm.model[0].bs=bs
return lm, params, TEXT
def dump_param_dict(PATHS, TEXT, md, bs, bptt, em_sz, nh, nl, model_out):
d={}
d["n_tok"]=md.nt
d["pad"]=md.pad_idx
d["bs"]=bs
d["bptt"]=bptt
d["em_sz"]=em_sz
d["nh"]=nh
d["nl"]=nl
pickle.dump(d, open(f'{PATHS["generator"]}/{model_out}_params.pkl','wb'))
pickle.dump(TEXT, open(f'{PATHS["generator"]}/{model_out}_text.pkl','wb'))
def write_midi(s, filename, output_folder):
fp = s.write('midi', fp=output_folder/filename)
def string_inds_to_stream(string, sample_freq, note_offset, chordwise):
score_i = string.split(" ")
if chordwise:
return arrToStreamChordwise(score_i, sample_freq, note_offset)
else:
return arrToStreamNotewise(score_i, sample_freq, note_offset)
def arrToStreamChordwise(score, sample_freq, note_offset):
speed=1./sample_freq
piano_notes=[]
violin_notes=[]
time_offset=0
for i in range(len(score)):
if len(score[i])==0:
continue
for j in range(1,len(score[i])):
if score[i][j]=="1":
duration=2
new_note=music21.note.Note(j+note_offset)
new_note.duration = music21.duration.Duration(duration*speed)
new_note.offset=(i+time_offset)*speed
if score[i][0]=='p':
piano_notes.append(new_note)
elif score[i][0]=='v':
violin_notes.append(new_note)
violin=music21.instrument.fromString("Violin")
piano=music21.instrument.fromString("Piano")
violin_notes.insert(0, violin)
piano_notes.insert(0, piano)
violin_stream=music21.stream.Stream(violin_notes)
piano_stream=music21.stream.Stream(piano_notes)
main_stream = music21.stream.Stream([violin_stream, piano_stream])
return main_stream
def arrToStreamNotewise(score, sample_freq, note_offset):
speed=1./sample_freq
piano_notes=[]
violin_notes=[]
time_offset=0
i=0
while i<len(score):
if score[i][:9]=="p_octave_":
add_wait=""
if score[i][-3:]=="eoc":
add_wait="eoc"
score[i]=score[i][:-3]
this_note=score[i][9:]
score[i]="p"+this_note
score.insert(i+1, "p"+str(int(this_note)+12)+add_wait)
i+=1
i+=1
for i in range(len(score)):
if score[i] in ["", " ", "<eos>", "<unk>"]:
continue
elif score[i][:3]=="end":
if score[i][-3:]=="eoc":
time_offset+=1
continue
elif score[i][:4]=="wait":
time_offset+=int(score[i][4:])
continue
else:
# Look ahead to see if an end<noteid> was generated
# soon after.
duration=1
has_end=False
note_string_len = len(score[i])
for j in range(1,200):
if i+j==len(score):
break
if score[i+j][:4]=="wait":
duration+=int(score[i+j][4:])
if score[i+j][:3+note_string_len]=="end"+score[i] or score[i+j][:note_string_len]==score[i]:
has_end=True
break
if score[i+j][-3:]=="eoc":
duration+=1
if not has_end:
duration=12
add_wait = 0
if score[i][-3:]=="eoc":
score[i]=score[i][:-3]
add_wait = 1
try:
new_note=music21.note.Note(int(score[i][1:])+note_offset)
new_note.duration = music21.duration.Duration(duration*speed)
new_note.offset=time_offset*speed
if score[i][0]=="v":
violin_notes.append(new_note)
else:
piano_notes.append(new_note)
except:
print("Unknown note: " + score[i])
time_offset+=add_wait
violin=music21.instrument.fromString("Violin")
piano=music21.instrument.fromString("Piano")
violin_notes.insert(0, violin)
piano_notes.insert(0, piano)
violin_stream=music21.stream.Stream(violin_notes)
piano_stream=music21.stream.Stream(piano_notes)
main_stream = music21.stream.Stream([violin_stream, piano_stream])
return main_stream
def write_mid_mp3_wav(stream, fname, sample_freq, note_offset, out, chordwise):
stream_out=string_inds_to_stream(stream, sample_freq, note_offset, chordwise)
write_midi(stream_out, fname, out)
base=out/fname[:-4]
os.system(f'./data/mid2mp3.sh {base}.mid')
os.system(f'mpg123 -w {base}.wav {base}.mp3')