-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrainConstrainedNetwork.m
277 lines (241 loc) · 10.7 KB
/
trainConstrainedNetwork.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
function net = trainConstrainedNetwork(constraint,net,mbq,trainingOptions)
% TRAINCONSTRAINEDNETWORK Train a constrained neural network using
% adaptive momentum estimation (ADAM) solver.
%
% NET = TRAINCONSTRAINEDNETWORK(CONSTRAINT, NET, MBQ) trains an
% initialized dlnetwork object, NET, constructed to have the constraint
% CONSTRAINT, specified as one of these options: "fully-convex",
% "partially-convex", "fully-monotonic", "partially-monotonic", or
% "lipschitz". The function preserves the constraint. The data, MBQ, is
% specified as a minibatchqueue object.
%
% NET = TRAINCONSTRAINEDNETWORK(__,NAME=VALUE) specifies additional
% training options using one or more name-value arguments.
%
% InitialLearnRate - Initial learning rate for training. If the
% learning rate is too low, training will
% take a long time, but if it is too high,
% then the training is likely to get stuck at
% a suboptimal result.
% The default is 0.01.
% MaxEpochs - Maximum number of epochs for training.
% The default is 30.
% Decay - During training, drop the learning rate
% according to the expression, r/(1+n*x),
% where r is the InitialLearnRate value, x is
% the Decay value, and n is the number of
% training iterations. A value of 0 corresponds
% to no drop in learn rate.
% The default is 0.01.
% LossMetric - Metric to calculate loss at the end of each
% iteration, specified as: "mse", "mae", or
% "crossentropy".
% The default is "mse".
% L2Regularization - Factor for L2 regularization (weight decay).
% The default is 0.
% ValidationData - Data to use for validation during training,
% specified as a minibatchqueue object.
% ValidationFrequency - Frequency of validation in number of
% iterations. The default is 50.
% TrainingMonitor - Flag to display the training progress monitor
% showing the training data loss.
% The default is true.
% TrainingMonitorLogScale - Flag to display the training loss in log scale.
% The default is true.
% ShuffleMinibatches - Flag to shuffle the minibatchqueue before every
% training epoch.
% The default is false.
%
% TRAINCONSTRAINEDNETWORK name-value arguments that are valid when
% CONSTRAINT is "fully-monotonic", "partially-monotonic":
%
% pNorm - p-norm to measure distance with respect
% to the Lipschitz continuity definition.
% The default value is Inf.
%
% TRAINCONSTRAINEDNETWORK name-value arguments that are valid when
% CONSTRAINT is "lipschitz":
%
% UpperBoundLipschitzConstant - Upper bound on the Lipschitz constant for
% the network, specified as a positive real
% number.
% The default value is 1.
% pNorm - p-norm to measure distance with respect
% to the Lipschitz continuity definition.
% The default value is 1.
% Copyright 2024 The MathWorks, Inc.
arguments
constraint {...
mustBeTextScalar, ...
mustBeMember(constraint,["fully-convex","partially-convex","fully-monotonic","partially-monotonic","lipschitz"])}
net (1,1) dlnetwork
mbq (1,1) minibatchqueue
% Options
trainingOptions.MaxEpochs (1,1) {mustBeNumeric,mustBePositive,mustBeInteger} = 30
trainingOptions.InitialLearnRate (1,1) {mustBeNumeric,mustBePositive} = 0.01
trainingOptions.Decay (1,1) {mustBeNumeric,mustBePositive} = 0.01
trainingOptions.LossMetric {...
mustBeTextScalar, ...
mustBeMember(trainingOptions.LossMetric,["mse","mae","crossentropy"])} = "mse";
trainingOptions.L2Regularization (1,1) {mustBeNumeric, mustBeNonnegative} = 0
trainingOptions.ValidationData minibatchqueue {mustBeScalarOrEmpty} = minibatchqueue.empty
trainingOptions.ValidationFrequency (1,1) {mustBeNumeric, mustBePositive, mustBeInteger} = 50
trainingOptions.TrainingMonitor (1,1) logical = true;
trainingOptions.TrainingMonitorLogScale (1,1) logical = true;
trainingOptions.ShuffleMinibatches (1,1) logical = false;
% Lipschitz and Monotonic training options
trainingOptions.pNorm (1,1)
trainingOptions.UpperBoundLipschitzConstant (1,1) {mustBeNumeric,mustBePositive,mustBeFinite} = 1;
end
% Set up the training progress monitor
if trainingOptions.TrainingMonitor
monitor = trainingProgressMonitor;
% Track progress information
monitor.Info = ["LearningRate","Epoch","Iteration"];
% Plot the training and validation metrics on the same plot
monitor.Metrics = ["TrainingLoss", "ValidationLoss"];
groupSubPlot(monitor, "Loss", ["TrainingLoss", "ValidationLoss"]);
% Apply loss log scale
if trainingOptions.TrainingMonitorLogScale
yscale(monitor,"Loss","log");
end
% Specify the horizontal axis label for the training plot.
monitor.XLabel = "Iteration";
% Start the monitor
monitor.Status = "Running";
stopButton = @() ~monitor.Stop;
else
% Let training run without a monitor by setting stop to false
stopButton = @() 1;
end
% Prepare the generic hyperparameters
maxEpochs = trainingOptions.MaxEpochs;
initialLearnRate = trainingOptions.InitialLearnRate;
decay = trainingOptions.Decay;
metric = trainingOptions.LossMetric;
shuffleMinibatches = trainingOptions.ShuffleMinibatches;
l2Regularization = trainingOptions.L2Regularization;
validationData = trainingOptions.ValidationData;
validationFrequency = trainingOptions.ValidationFrequency;
% Specify ADAM options
avgG = [];
avgSqG = [];
% Initialize training loop variables
epoch = 0;
iteration = 0;
% Setup proximal operator
% Set the default pNorm depending on constraint if unset by user.
if ~any(fields(trainingOptions) == "pNorm")
if isequal(constraint,"fully-monotonic") || isequal(constraint,"partially-monotonic")
trainingOptions.pNorm = Inf;
elseif isequal(constraint,"lipschitz")
trainingOptions.pNorm = 1;
end
else
iValidatePNorm(trainingOptions.pNorm);
end
proximalOp = iSetupProximalOperator(constraint,trainingOptions);
while epoch < maxEpochs && stopButton()
epoch = epoch + 1;
% Reset data.
if shuffleMinibatches
shuffle(mbq);
else
reset(mbq);
end
while hasdata(mbq) && stopButton()
iteration = iteration + 1;
% Read mini-batch of data.
[X,T] = next(mbq);
% Determine learning rate for time-based decay learning rate schedule.
learnRate = initialLearnRate/(1 + decay*iteration);
% Evaluate the model gradients, and loss using dlfeval and the
% modelLoss function and update the network state.
[lossTrain,gradients,state] = dlfeval(dlaccelerate(@iModelLoss),net,X,T,metric,l2Regularization);
net.State = state;
% Gradient Update
[net,avgG,avgSqG] = adamupdate(net,gradients,avgG,avgSqG,epoch,learnRate);
% Proximal Update
net = proximalOp(net);
% Update the training monitor
if trainingOptions.TrainingMonitor
updateInfo(monitor, ...
LearningRate=learnRate, ...
Epoch=string(epoch) + " of " + string(maxEpochs), ...
Iteration=string(iteration));
recordMetrics(monitor,iteration, ...
TrainingLoss=lossTrain);
monitor.Progress = 100*epoch/maxEpochs;
end
% Record validation loss, if requested
if ~isempty(validationData)
if (iteration == 1) || (mod(iteration, validationFrequency) == 0)
% Reset the validation data
if ~hasdata(validationData)
reset(validationData);
end
% Compute the validation loss
[X, T] = next(validationData);
lossValidation = iModelLoss(net, X, T, metric, l2Regularization);
% Update the training monitor
if trainingOptions.TrainingMonitor
recordMetrics(monitor,iteration, ...
ValidationLoss=lossValidation);
end
end
end
end
end
% Update the training monitor status
if trainingOptions.TrainingMonitor
if monitor.Stop == 1
monitor.Status = "Training stopped";
else
monitor.Status = "Training complete";
end
end
end
%% Helpers
function [loss,gradients,state] = iModelLoss(net,X,T,metric,l2Regularization)
% Make a forward pass
[Y, state] = forward(net,X);
% Compute the loss
switch metric
case "mse"
loss = mse(Y,T);
case "mae"
loss = mean(abs(Y-T), 'all');
case "crossentropy"
loss = crossentropy(softmax(Y),T);
end
if nargout > 1
% Compute the gradient of the loss with respect to the learnables
gradients = dlgradient(loss,net.Learnables);
% Apply L2 regularization
idxWeights = net.Learnables.Parameter == "Weights";
gradients(idxWeights,:) = dlupdate(@(g,w) g + l2Regularization*w, gradients(idxWeights, :), net.Learnables(idxWeights, :));
end
end
function proximalOp = iSetupProximalOperator(constraint,trainingOptions)
switch constraint
case "fully-convex"
proximalOp = @(net) conslearn.convex.makeNetworkConvex(net);
case "partially-convex"
proximalOp = @(net) conslearn.convex.makeNetworkConvex(net);
case "fully-monotonic"
pNorm = trainingOptions.pNorm;
proximalOp = @(net) conslearn.monotonic.makeNetworkMonotonic(net,pNorm);
case "partially-monotonic"
pNorm = trainingOptions.pNorm;
proximalOp = @(net) conslearn.monotonic.makeNetworkMonotonic(net,pNorm);
case "lipschitz"
pNorm = trainingOptions.pNorm;
lipschitzUpperBound = trainingOptions.UpperBoundLipschitzConstant;
proximalOp = @(net) conslearn.lipschitz.makeNetworkLipschitz(net,pNorm,lipschitzUpperBound);
end
end
function iValidatePNorm(param)
if (~isequal(param,1) && ~isequal(param,2) && ~isequal(param,Inf)) && ~isempty(param)
error("Invalid 'PNorm' value. Value must be 1, 2, or Inf.")
end
end