-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_identity_chain_google.py
347 lines (313 loc) · 15.7 KB
/
run_identity_chain_google.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
# Authors: marcusm117
# License: Apache 2.0
# Standard Library Modules
import argparse
import os
import time
# External Modules
import google.generativeai as genai
# Internal Modules
from identitychain import IdentityChain
from identitychain.utils import g_unzip
# add your OpenAI API key here
genai.configure(api_key="YOUR_API_KEY")
# prompt settings
NL_2_PL_HUMANEVAL = [
{ # Instructions
"role": "system",
"content": "Solve a coding problem in Python. "
+ "Given the function signature and the problem description in the docstring, "
+ "you only need to continue to complete the function body. "
+ "Please strictly follow the format of the example below! "
+ "Don't write down any thought processes! "
+ "Don't copy the problem description! "
+ "You must use correct indentation! "
+ "Make sure your return statement is always inside the function! "
+ "Make sure your output always starts with an indentation of exactly 4 spaces! "
+ "Output an indentation of 4 spaces first before you write anything else! "
+ "You’d better be sure. \n\n",
},
{ # One-Shot Example: user input = function signature + problem description in docstring format
"role": "user",
"content": 'from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n '
+ '"""Check if in given list of numbers, are any two numbers closer to each other than\n given threshold.\n '
+ '>>> has_close_elements([1.0, 2.0, 3.0], 0.5)\n False\n '
+ '>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n True\n """\n',
},
{ # One-Shot Example: model output = solution
"role": "assistant",
"content": ' sorted_numbers = sorted(numbers)\n for i in range(len(sorted_numbers) - 1):\n '
+ 'if sorted_numbers[i + 1] - sorted_numbers[i] < threshold:\n return True\n return False\n\n',
},
{ # Instructions to emphasize the format
"role": "system",
"content": "\nPlease strictly follow the format of the example above! "
+ "You must use correct indentation! "
+ "Make sure your return statement is always inside the function! "
+ "Make sure your output always starts with an indentation of exactly 4 spaces! "
+ "Output an indentation of 4 spaces first before you write anything else! "
+ "You’d better be sure. \n\n",
},
]
PL_2_NL_HUMANEVAL = [
{ # Instructions
"role": "system",
"content": "Given a Python solution to a coding problem, "
+ "write an accurate problem description for it in the format of Python docstring without 'Args' and 'Returns'. "
+ "Please strictly follow the format of the example below!"
+ "Provide all necessary details to accurately describe the problem, but in a concise way! "
+ "Make sure to give a few examples of inputs and outputs in the docstring! "
+ "Make sure the docstring has no 'Args' and no 'Returns'! "
+ "You can only write a text desciption with a few examples as shown in the example below! "
+ "Make sure your output always starts with an indentation of exactly 4 spaces! "
+ "You’d better be sure. \n\n",
},
{ # One-Shot Example: user input = function signature + candidate solution
"role": "user",
"content": 'from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n '
+ 'sorted_numbers = sorted(numbers)\n for i in range(len(sorted_numbers) - 1):\n '
+ 'if sorted_numbers[i + 1] - sorted_numbers[i] < threshold:\n return True\n return False\n\n',
},
{ # One-Shot Example: model output = problem description in docstring format
"role": "assistant",
"content": ' """Check if in given list of numbers, are any two numbers closer to each other than\n '
+ 'given threshold.\n >>> has_close_elements([1.0, 2.0, 3.0], 0.5)\n False\n '
+ '>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n True\n """\n',
},
{ # Instructions to emphasize the format
"role": "system",
"content": "\nPlease strictly follow the format of the example above! "
+ "Provide all necessary details to accurately describe the problem, but in a concise way! "
+ "Make sure to give a few examples of inputs and outputs in the docstring! "
+ "Make sure the docstring has no 'Args' and no 'Returns'! "
+ "You can only write a text desciption with a few examples as shown in the example above! "
+ "Make sure your output always starts with an indentation of exactly 4 spaces! "
+ "You’d better be sure. \n\n",
},
]
NL_2_PL_MBPP = [
{ # Instructions
"role": "system",
"content": "Solve a coding problem in Python. "
+ "Given the function signature and the problem description in the docstring, you only need to continue to complete the function body. "
+ "Please strictly follow the format of the example below! "
+ "Don't write down any thought processes! "
+ "Don't copy the problem description! "
+ "You must use correct indentation! "
+ "Make sure your return statement is always inside the function! "
+ "Make sure your output always starts with an indentation of exactly 4 spaces! "
+ "Output an indentation of 4 spaces first before you write anything else! "
+ "You’d better be sure. \n\n",
},
{ # One-Shot Example: user input = function signature + problem description in docstring format
"role": "user",
"content": 'def similar_elements(test_tup1, test_tup2):\n '
+ '""" Write a function to find the shared elements from the given two lists.\n """\n',
},
{ # One-Shot Example: model output = solution
"role": "assistant",
"content": ' res = tuple(set(test_tup1) & set(test_tup2))\n return (res)\n\n',
},
{ # Instructions to emphasize the format
"role": "system",
"content": "\nPlease strictly follow the format of the example above! "
+ "You must use correct indentation! "
+ "Make sure your return statement is always inside the function! "
+ "Make sure your output always starts with an indentation of exactly 4 spaces! "
+ "Output an indentation of 4 spaces first before you write anything else! "
+ "You’d better be sure. \n\n",
},
]
PL_2_NL_MBPP = [
{ # Instructions
"role": "system",
"content": "Given a Python solution to a coding problem, write an accurate problem description for it in the format of Python docstring"
+ "Please strictly follow the format of the example below!"
+ "Provide all necessary details to accurately describe the problem, but in a concise way! "
+ "Make sure the docstring has no 'Args', no 'Returns', and no 'Examples'! "
+ "You can only write a plain text desciption as shown in the example below! "
+ "Make sure your output always starts with an indentation of exactly 4 spaces! "
+ "You’d better be sure. \n\n",
},
{ # One-Shot Example: user input = function signature + candidate solution
"role": "user",
"content": 'def similar_elements(test_tup1, test_tup2):\n res = tuple(set(test_tup1) & set(test_tup2))\n return (res)\n\n',
},
{ # One-Shot Example: model output = problem description in docstring format
"role": "assistant",
"content": ' """ Write a function to find the shared elements from the given two lists.\n """\n',
},
{ # Instructions to emphasize the format
"role": "system",
"content": "\nPlease strictly follow the format of the example above! "
+ "Provide all necessary details to accurately describe the problem, but in a concise way! "
+ "Make sure the docstring has no 'Args', no 'Returns', and no 'Examples'! "
+ "You can only write a plain text desciption as shown in the example above! "
+ "Make sure your output always starts with an indentation of exactly 4 spaces! "
+ "You’d better be sure. \n\n",
},
]
# convert the structured prompts to strings
NL_2_PL_HUMANEVAL_STR = (
NL_2_PL_HUMANEVAL[0]["content"]
+ "User Input:\n"
+ NL_2_PL_HUMANEVAL[1]["content"]
+ "Your Output:\n"
+ NL_2_PL_HUMANEVAL[2]["content"]
+ NL_2_PL_HUMANEVAL[3]["content"]
)
PL_2_NL_HUMANEVAL_STR = (
PL_2_NL_HUMANEVAL[0]["content"]
+ "User Input:\n"
+ PL_2_NL_HUMANEVAL[1]["content"]
+ "Your Output:\n"
+ PL_2_NL_HUMANEVAL[2]["content"]
+ PL_2_NL_HUMANEVAL[3]["content"]
)
NL_2_PL_MBPP_STR = (
NL_2_PL_MBPP[0]["content"]
+ "User Input:\n"
+ NL_2_PL_MBPP[1]["content"]
+ "Your Output:\n"
+ NL_2_PL_MBPP[2]["content"]
+ NL_2_PL_MBPP[3]["content"]
)
PL_2_NL_MBPP_STR = (
PL_2_NL_MBPP[0]["content"]
+ "User Input:\n"
+ PL_2_NL_MBPP[1]["content"]
+ "Your Output:\n"
+ PL_2_NL_MBPP[2]["content"]
+ PL_2_NL_MBPP[3]["content"]
)
# get completion from a Google model
def get_google_model_chat(
prompt,
user_input,
model,
tokenizer,
args,
):
# select the correct in-context learning prompt based on the task
messages = prompt + user_input
# get response from OpenAI
try:
# get the response
response = model.generate_content(messages)
# print(response.candidates)
# extract the response text content
response_content = response.candidates[0].content.parts[0].text
# if the API is unstable, consider sleeping for a short period of time after each request
time.sleep(0.5)
return response_content
# when encounter APIError, sleep for 5 or specified seconds and try again
except Exception as error:
retry_time = error.retry_after if hasattr(error, "retry_after") else 5
print(f"{error}. Sleeping for {retry_time} seconds ...")
time.sleep(retry_time)
return get_google_model_chat(prompt, user_input, model, tokenizer, args)
# EXAMPLE USAGE:
# python run_identity_chain_google.py
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', type=str, help='Path to the model')
parser.add_argument('--hf_dir', type=str, help='Path to the huggingface cache directory')
parser.add_argument('--input_path', type=str, help='Path to the input file')
parser.add_argument('--output_dir', type=str, help='Path to the output directory')
parser.add_argument('--chain_length', type=int, default=5, help='Number of steps in the Identity Chain')
parser.add_argument('--seq_length', type=int, default=2048, help='max length of the sequence')
parser.add_argument('--gen_length', type=int, default=None, help='max length of the generated sequence')
parser.add_argument('--do_sample', action='store_true', help='whether to do sampling')
parser.add_argument('--greedy_early_stop', action='store_true', help='whether to stop inference when fixed point')
parser.add_argument('--temperature', type=float, default=0, help='temperature for sampling')
parser.add_argument('--top_k', type=int, default=0, help='top k for sampling')
parser.add_argument('--top_p', type=float, default=1, help='top p for sampling')
parser.add_argument('--num_return_sequences', type=int, default=1, help='number of return sequences')
parser.add_argument('--num_beams', type=int, default=1, help='number of beams for beam search')
parser.add_argument('--use_int8', action='store_true', help='whether to use int8 quantization')
parser.add_argument('--use_fp16', action='store_true', help='whether to use fp16 precision')
parser.add_argument('--pass_only', action='store_true', help='whether to only pass the input to the next step')
parser.add_argument('--mask_func_name', action='store_true', help='whether to mask the function name')
parser.add_argument('--bootstrap_method', type=str, default='problem', help='method to bootstrap the chain')
parser.add_argument('--resume_task_bs', type=int, default=0, help='task to resume at when bootstrapping')
parser.add_argument('--resume_task_run', type=int, default=0, help='task to resume at')
parser.add_argument('--skip_bootstrap', action='store_true', help='whether to skip the bootstrap stage')
parser.add_argument('--version', type=str, default='v1', help='version of the identity chain')
args = parser.parse_args()
# create output directory if not exists
if not os.path.exists("../tmp"):
os.makedirs("../tmp", exist_ok=True)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir, exist_ok=True)
# unzip input file
input_path = args.input_path
input_file = input_path.split("/")[-1]
g_unzip(f"{input_path}.gz", input_path)
# for output path naming
model_name = args.model_name_or_path.split("/")[-1]
tmp = args.temperature
len = args.chain_length
bootstrap = "pb" if args.bootstrap_method == "problem" else "cb"
pass_only = "po" if args.pass_only else "all"
mask_name = "m" if args.mask_func_name else "um"
greedy = "g" if args.greedy_early_stop else ""
version = args.version
# define the output path
output_path = f"{args.output_dir}/IDChain_{model_name}_tmp{tmp}{greedy}_len{len}_{bootstrap}_{pass_only}_{mask_name}_{version}_{input_file}"
# configure prompts for HumanEvalPlus-Mini-v0.1.6
if args.input_path.endswith("EvalPlus-Mini-v0.1.6_reformatted.jsonl"):
nl_2_pl_prompt = NL_2_PL_HUMANEVAL_STR
pl_2_nl_prompt = PL_2_NL_HUMANEVAL_STR
# configure prompts for MBPP-S_test
elif args.input_path.endswith("MBPP-S_test_reformatted.jsonl"):
nl_2_pl_prompt = NL_2_PL_MBPP_STR
pl_2_nl_prompt = PL_2_NL_MBPP_STR
else:
raise ValueError(f"Input file {args.input_path} not supported")
# for debugging
print("--------- Prompt Configuration -----------")
print(nl_2_pl_prompt)
print(pl_2_nl_prompt)
print("-----------------------------------------")
# create generation config
generation_config = genai.GenerationConfig(
candidate_count=1,
max_output_tokens=args.gen_length,
temperature=args.temperature,
)
# creat the model object
model_obj = genai.GenerativeModel(args.model_name_or_path, generation_config=generation_config)
# create an Identity Chain
my_chain = IdentityChain(
model=model_obj,
tokenizer=None,
args=args,
input_path=input_path,
output_path=output_path,
get_model_response_NL_to_PL=get_google_model_chat,
get_model_response_PL_to_NL=get_google_model_chat,
prompt_NL_to_PL=nl_2_pl_prompt,
prompt_PL_to_NL=pl_2_nl_prompt,
bootstrap_method=args.bootstrap_method,
length=args.chain_length,
)
print("-----------------------------------------")
print(f"Input Path: {input_path}")
print(f"Output Path: {output_path}")
print("-----------------------------------------")
input("Please Confirm the Identity Chain Setup. Press 'Enter' to Continue...")
# uncomment the code below to bootstrap the chain
# if resume_task_run != 0 or skip_bootstrap == True, then we don't need to bootstrap
if (args.resume_task_run == 0) and (not args.skip_bootstrap):
my_chain.bootstrap(resume_task=args.resume_task_bs)
# if you already have a bootstraped chain, ignore the line above
# the following line will resume the chain from your specified task and step
my_chain.run(
resume_task=args.resume_task_run,
resume_step=1,
pass_only=args.pass_only,
mask_func_name=args.mask_func_name,
greedy_early_stop=args.greedy_early_stop,
)
if __name__ == "__main__":
main()