-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpop_struct.py
executable file
·587 lines (493 loc) · 24.2 KB
/
pop_struct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
#!/usr/bin/env python
import sys
import pylab as pl
import numpy as np
import os
import ms2something as ms
"""
Population structures
"""
__space__ = " "
class ms_param_of_case :
def post_init_process_seqlen (self, seqlen = "" ):
"""
if seqlen == long, over write the default the seqlen to 3 * 10**7
elif seqlen == median, over wirte the default seqlen to 10**6
elif seqlen == short, over write the default seqlen to 5 * 10**5
"""
if seqlen == "":
return
# First undo the mutation rate and recombination rate.
self.t = self.t / float(self.seqlen)
self.r = self.r / float(self.seqlen)
if seqlen == "long": self.seqlen = 3 * 10**7
elif seqlen == "median": self.seqlen = 10**6
elif seqlen == "short": self.seqlen = 5 * 10**5
elif seqlen == "whole-genome": self.seqlen = 3 * 10**9
else:
# numerical
self.seqlen = seqlen
self.t = self.t * float(self.seqlen)
self.r = self.r * float(self.seqlen)
def post_init_process_mutrate (self, mut_ratio = ""):
"""
if mut_ratio == high, over write the mutation rate to 10 times more than the recombination rate
if mut_ratio == median, over write the mutation rate to 5 times more than the recombination rate
if mut_ratio == equal, over write the mutation rate equal to the recombination rate
"""
#if mut_ratio == "":
#return
if mut_ratio == "high": self.t = self.r * 10
elif mut_ratio == "median": self.t = self.r * 5
elif mut_ratio == "equal": self.t = self.r
def __init__(self, case, nsam, seqlen = "", mut_ratio = ""):
"""
define ms cases and parameters
Note that 4N0 * mu = t/L
where N0 is the scaling population size,
Time and topTime are scaled in 4N0 unit!
mu is the mutation rate per base per individual
L is the length of the sequence
t is the mutation rate per locus per generation
if seqlen == long, over write the default the seqlen to 3 * 10**7
elif seqlen == median, over wirte the default seqlen to 10**6
elif seqlen == short, over write the default seqlen to 5 * 10**5
if mut_ratio == high, over write the mutation rate to 10 times more than the recombination rate
if mut_ratio == median, over write the mutation rate to 5 times more than the recombination rate
if mut_ratio == equal, over write the mutation rate equal to the recombination rate
"""
self.case = case
self.fixed_seed = False
self.migration_cmd = None
if self.case == "sim-0":
# -t 81960 -r 13560 30000000 -eN 0.01 0.05 -eN 0.0375 0.5 -eN 1.25 1
# from the paper, mu is used 2.5e-8
self.scaling_N0 = 27320
self.seqlen = 3*10**7
self.t = 0.002732 * self.seqlen
self.r = self.seqlen * 0.000452
self.Time = [.01, 0.0375, 1.25]
self.pop = [0.05, 0.5, 1]
elif self.case == "sim-1":
# -t 30000 -r 6000 30000000 -eN 0.01 0.1 -eN 0.06 1 -eN 0.2 0.5 -eN 1 1 -eN 2 2
# from the paper, mu is used 2.5e-8
self.scaling_N0 = 10**4 # = 3e4 / 3e7 / 2.5e-8 / 4
self.seqlen = 3*10**7
self.t = self.seqlen * 0.001
self.r = self.seqlen * 0.0002
self.Time = [.01, 0.06, 0.2, 1, 2]
self.pop = [0.1, 1, 0.5, 1, 2]
elif self.case == "sim-1-migration":
# -t 30000 -r 6000 30000000 -I 2 <nsam/2> <nsam/2> 0.0 -eN 0.01 0.1 -eN 0.06 1 -eN 0.2 0.5 -ej 0.6 2 1 -eN 1 1 -eN 2 2
# from the paper, mu is used 2.5e-8
self.scaling_N0 = 10**4 # = 3e4 / 3e7 / 2.5e-8 / 4
self.seqlen = 3*10**7
self.t = self.seqlen * 0.001
self.r = self.seqlen * 0.0002
self.migration_cmd = " -I 2 " + str(int(nsam/2)) + " " + str(int(nsam/2)) + " 0.0"
self.Time = [.01, 0.06, 0.2, 0.6, 1, 2]
self.pop = [0.1, 1, 0.5, "-ej %s 2 1", 1, 2]
elif self.case == "sim-2":
# -t 3000 -r 600 30000000 -eN 0.1 5 -eN 0.6 20 -eN 2 5 -eN 10 10 -eN 20 5
# from the paper, mu is used 2.5e-8
self.scaling_N0 = 10**3 # 3e3 / 3e7 / 2.5e-8 / 4
self.seqlen = 3*10**7
self.t = self.seqlen * 0.0001
self.r = self.seqlen * 2e-5
self.Time = [0.1, 0.6, 2, 10, 20]
self.pop = [5, 20, 5, 10, 5]
elif self.case == "sim-3":
# -t 60000 -r 12000 30000000 -eN 0.01 0.05 -eN 0.0150 0.5 -eN 0.05 0.25 -eN 0.5 0.5
# from the paper, mu is used 2.5e-8
self.scaling_N0 = 2 * 10**4 # = 6e4 / 3e7 / 2.5e-8 / 4
self.seqlen = 3*10**7
self.t = self.seqlen * 0.002
self.r = self.seqlen * 0.0004
self.Time = [0.01, 0.015, 0.05, 0.5]
self.pop = [0.05, 0.5, 0.25, 0.5]
elif self.case == "sim-1-modified":
# from the paper, mu is used 2.5e-8
# -t 30000 -r 6000 30000000 -T -eN 0.05 0.1 -eN 0.07 1 -eN 0.2 0.5 -eN 0.8 1 -eN 1.5 2
self.scaling_N0 = 10**4
self.seqlen = 3*10**7
self.t = self.seqlen * 0.001
self.r = self.seqlen * 0.0002
self.Time = [0.05, 0.07, 0.2, 0.8, 1.5]
self.pop = [0.1, 1, 0.5, 1, 2]
elif self.case == "sim-YH":
# -t 65130.39 -r 10973.82 30000000 -eN 0.0055 0.0832 -eN 0.0089 0.0489 \
#-eN 0.0130 0.0607 -eN 0.0177 0.1072 -eN 0.0233 0.2093 -eN 0.0299 0.3630 \
#-eN 0.0375 0.5041 -eN 0.0465 0.5870 -eN 0.0571 0.6343 -eN 0.0695 0.6138 \
#-eN 0.0840 0.5292 -eN 0.1010 0.4409 -eN 0.1210 0.3749 -eN 0.1444 0.3313 \
#-eN 0.1718 0.3066 -eN 0.2040 0.2952 -eN 0.2418 0.2915 -eN 0.2860 0.2950 \
#-eN 0.3379 0.3103 -eN 0.3988 0.3458 -eN 0.4701 0.4109 -eN 0.5538 0.5048 \
#-eN 0.6520 0.5996 -eN 0.7671 0.6440 -eN 0.9020 0.6178 -eN 1.0603 0.5345 \
#-eN 1.4635 1.7931
# from the paper, mu is used 2.5e-8
# self.t = 65130.39
# self.r = 10973.82
self.scaling_N0 = 2.171013*10**4 # = 65130.39 / 3e7 / 2.5e-8 / 4
self.seqlen = 3*10**7
self.t = 0.002171013 * self.seqlen
self.r = 0.000365794 * self.seqlen
self.Time = [0.0055, 0.0089, 0.0130, 0.0177, 0.0233, 0.0299, 0.0375, 0.0465, 0.0571, 0.0695, 0.0840, 0.1010, 0.1210, 0.1444, 0.1718, 0.2040, 0.2418, 0.2860, 0.3379, 0.3988, 0.4701, 0.5538, 0.6520, 0.7671, 0.9020, 1.0603, 1.4635]
self.pop = [0.0832, 0.0489, 0.0607, 0.1072, 0.2093, 0.3630, 0.5041, 0.5870, 0.6343, 0.6138, 0.5292, 0.4409, 0.3749, 0.3313, 0.3066, 0.2952, 0.2915, 0.2950, 0.3103, 0.3458, 0.4109, 0.5048, 0.5996, 0.6440, 0.6178, 0.5345, 1.7931]
elif self.case == "diCal-S1":
self.scaling_N0 = 10**4
self.seqlen = 10**6
self.t = self.seqlen * 0.01
self.r = self.seqlen * 0.01
self.Time = [0.05, 0.2, 0.5]
self.pop = [0.1, 0.5, 1.25]
elif self.case == "diCal-S2":
self.scaling_N0 = 10**4
self.seqlen = 10**6
self.t = self.seqlen * 0.01
self.r = self.seqlen * 0.01
self.Time = [0, 0.05, 0.2, 0.5]
self.pop = [10, 0.1, 0.5, 1.25]
elif self.case == "test-1-original":
self.scaling_N0 = 10**4
# self.seqlen = 5*10**6
self.seqlen = 5*10**5
self.t = self.seqlen * 0.005
self.r = self.seqlen * 0.0005
self.Time = [0, 0.45, 0.5]
self.pop = [1, 0.1, 1]
elif self.case == "test-1":
self.scaling_N0 = 10**4
self.seqlen = 5 * 10**6
self.t = self.seqlen * 0.005
self.r = self.seqlen * 0.0005
self.Time = [0, 0.45, 0.5]
self.pop = [1, 0.1, 1]
elif self.case == "dummy":
self.scaling_N0 = 10**4
self.t = 1000
self.seqlen = 1000000
self.r = 600
self.Time = [0, .01, 0.06, 0.2, 1, 2]
self.pop = [0.25, 0.1, 1, 0.5, 1, 2]
elif self.case == "dummy0":
self.scaling_N0 = 10**4
self.t = 10
self.seqlen = 100
self.r = 6
self.Time = [0, .01, 0.06, 0.2, 1, 2]
self.pop = [1, 0.25, 0.25, 0.25, 0.25, 0.25]
elif self.case == "dummy1":
# -t 60000 -r 12000 30000000 -eN 0.01 0.05 -eN 0.0150 0.5 -eN 0.05 0.25 -eN 0.5 0.5
self.scaling_N0 = 10**4
self.t = 100
self.r = 60
self.seqlen = 1000000
self.Time = [0, 0.01, 0.015, 0.05, 0.5]
self.pop = [1, 0.05, 0.5, 0.25, 0.5]
elif self.case == "open":
# -t 60000 -r 12000 30000000 -eN 0.01 0.05 -eN 0.0150 0.5 -eN 0.05 0.25 -eN 0.5 0.5
self.scaling_N0 = 10**4
self.seqlen = 10**6
self.t = .0100 * self.seqlen
self.r = 0.006 * self.seqlen
self.Time = [0, 0.5, 1]
self.pop = [1, 0.5, 0.25]
elif self.case == "close":
# -t 60000 -r 12000 30000000 -eN 0.01 0.05 -eN 0.0150 0.5 -eN 0.05 0.25 -eN 0.5 0.5
self.scaling_N0 = 10**4
self.seqlen = 10**6
self.t = .0100 * self.seqlen
self.r = 0.006 * self.seqlen
self.Time = [0, 0.5, 1]
self.pop = [1, 2, 3]
elif self.case == "One":
self.scaling_N0 = 10**4
self.seqlen = 10**6
self.t = 0.0013 * self.seqlen
self.r = 0.00013 * self.seqlen
self.Time = [0, 0.45, 0.79, 1.35]
self.pop = [1, 1, 1, 1]
elif self.case == "Null":
self.scaling_N0 = 10**4
self.seqlen = 10**6
self.t = 0.0013 * self.seqlen
self.r = 0.00013 * self.seqlen
self.Time = []
self.pop = []
elif self.case == "Two":
self.scaling_N0 = 10**4
self.seqlen = 10**6
self.t = 0.0013 * self.seqlen
self.r = 0.00013 * self.seqlen
self.Time = [0, 0.45, 0.79, 1.35]
self.pop = [2, 2, 2, 2]
elif self.case == "Half":
self.scaling_N0 = 10**4
self.seqlen = 10**6
self.t = 0.0013 * self.seqlen
self.r = 0.00013 * self.seqlen
self.Time = [0, 0.45, 0.79, 1.35]
self.pop = [.5, .5, .5, .5]
elif self.case == "Heat":
self.scaling_N0 = 10**4
self.seqlen = 2 * 10**5
self.t = 0.0009 * self.seqlen
self.r = 0.00015 * self.seqlen
self.Time = [0]
self.pop = [1]
elif self.case == "Heat2":
self.scaling_N0 = 2 * 10**4
self.seqlen = 2 * 10**5
self.t = 0.0009 * self.seqlen
self.r = 0.00015 * self.seqlen
self.Time = [0]
self.pop = [1]
elif self.case == "old":
self.scaling_N0 = 10**4
self.t = 1000
self.r = 600
self.seqlen = 10000
self.Time = [0, 8, 10, 15]
self.pop = [1, 1.5, .5, 1]
elif self.case == "wakeley_a":
self.scaling_N0 = 10**4
self.seqlen = 10**6
self.t = .0100 * self.seqlen
self.r = 0.006 * self.seqlen
self.Time = [0, 4]
self.pop = [1, .25]
elif self.case == "wakeley_b":
self.scaling_N0 = 10**4
self.seqlen = 10**6
self.t = .0100 * self.seqlen
self.r = 0.006 * self.seqlen
self.Time = [0, 4]
self.pop = [1, 4]
elif self.case == "recomb_test1":
self.scaling_N0 = 10**4
self.seqlen = 10**6
self.t = 0.0009 * self.seqlen
self.r = 0.00015 * self.seqlen
self.Time = [0]
self.pop = [1]
elif self.case == "recomb_test2":
self.scaling_N0 = 10**4
self.seqlen = 10**7
self.t = 0.0013 * self.seqlen
self.r = 0.00013 * self.seqlen
self.Time = [0]
self.pop = [1]
self.post_init_process_seqlen ( seqlen = seqlen )
self.post_init_process_mutrate ( mut_ratio = mut_ratio )
#return
def printing(self):
"""
Print members of Class ms_param_of_case
"""
print "Case: ", self.case
print "Ne at Time(0), a.k.a N0 =", self.scaling_N0
print "Sequence length =", self.seqlen
print "Mutation rate per locus per generation (scaled by 4N0) =", self.t
print "Recombination per locus rate per generation (scaled by 4N0) =", self.r
print "Top time in 2N0 =", self.topTime2N0();
print "Top time in 4N0 =", self.topTime();
def plot(self, ylog10scale = False, timescale = "years", year = 25):
"""
Generate figure and axis for the population structure
timescale choose from "2N0", "4N0", "generation" or "years"
"""
time = self.Time
pop = self.pop
for i in range(1,len(self.pop)):
if type(pop[i]) == type(""):
# ignore migration commands, and replace by (unchanged) pop size
pop[i] = pop[i-1]
if time[0] != 0 :
time.insert(0, float(0))
pop.insert(0, float(1))
if timescale == "years":
time = [ti * 4 * self.scaling_N0 * year for ti in time ]
pl.xlabel("Time (years, "+`year`+" years per generation)", fontsize=20)
#pl.xlabel("Years")
elif timescale == "generation":
time = [ti * 4 * self.scaling_N0 for ti in time ]
pl.xlabel("Generations)")
elif timescale == "4N0":
time = [ti*1 for ti in time ]
pl.xlabel("Time (4N generations)")
elif timescale == "2N0":
time = [ti*2 for ti in time ]
pl.xlabel("Time (2N generations)")
else:
print "timescale must be one of \"4N0\", \"generation\", or \"years\""
return
time[0] = time[1] / float(20)
time.append(time[-1] * 2)
yaxis_scaler = 10000
pop = [popi * self.scaling_N0 / float(yaxis_scaler) for popi in pop ]
pop.insert(0, pop[0])
pl.xscale ('log', basex = 10)
#pl.xlim(min(time), max(time))
pl.xlim(1e3, 1e7)
if ylog10scale:
pl.ylim(0.06, 10000)
pl.yscale ('log', basey = 10)
else:
pl.ylim(0, max(pop)+2)
pl.ylim(0,5)
pl.tick_params(labelsize=20)
#pl.step(time, pop , color = "blue", linewidth=5.0)
pl.step(time, pop , color = "red", linewidth=5.0)
pl.grid()
#pl.step(time, pop , color = "black", linewidth=5.0)
#pl.title ( self.case + " population structure" )
#pl.ylabel("Pop size ($*$ "+`yaxis_scaler` +")")
pl.ylabel("Effective population size",fontsize=20 )
def sim_file_names(self, nsam = 2, ith_run = 0):
"""
Create file names for ms simulations
"""
self.ms_out_file_prefix = self.case + \
"Samples" +`nsam` + \
"msdata"
self.ms_out_file_prefix += `ith_run`
print self.ms_out_file_prefix
self.position_file = self.ms_out_file_prefix + "position"
self.seg_file = self.ms_out_file_prefix + "seg"
self.tree_file = self.ms_out_file_prefix + "msTrees"
self.tmrca_file = self.ms_out_file_prefix + "mstmrca"
self.mschange_file = self.ms_out_file_prefix + "mschange"
def simulate_command( self, nsam = 2, loci_length = 0, mutation_rate = 0, num_loci = 1, ith_run = 0, additionalFlags = ""):
"""
Generate ms command for simulation
"""
self.sim_file_names(nsam, ith_run)
if loci_length != 0:
self.t /= self.seqlen * loci_length
self.seqlen = loci_length
if mutation_rate == 0:
mutation_rate = self.t
else:
mutation_rate *= self.seqlen
method = "ms"
if ( self.seqlen > 10**9 ):
method = "scrm"
# build ms command line for parameters, and execute
ms_command = method + __space__ + \
`nsam` + __space__ + \
`num_loci` + __space__ + \
"-t" + __space__ + \
`int(mutation_rate)` + __space__ + \
"-r" + __space__ + \
`int(self.r)` + __space__ + \
`int(self.seqlen)` + __space__ + \
"-T" + __space__
ms_command += "-p 10" + __space__ + additionalFlags + __space__
if self.migration_cmd:
ms_command += self.migration_cmd + __space__
for i in range(len(self.Time)):
#if (length(ms_param$Time)==1) {break;} # assume that at time zero, all the population structure have size N_0 = scaling_N0
if type(self.pop[i]) == type(""):
ms_command += (self.pop[i] % self.Time[i]) + __space__
else:
# common case
ms_command += "-eN" + __space__ + `self.Time[i]` + __space__ + `self.pop[i]` + __space__
if self.fixed_seed:
ms_command += "-seed " + __space__ + `ith_run` + __space__ + `ith_run` + __space__ + `ith_run` + __space__
if ( self.seqlen > 10**9 ):
ms_command += "-l 300000" + __space__
ms_command += ">" + __space__ + self.ms_out_file_prefix
print ms_command
self.ms_command = ms_command
def ms_seed(self, python_seed):
"""
Args: python_seed
Generate three random numbers for ms, as the ms random seed
"""
if python_seed == 0:
return "2 2 2"
else:
np.random.seed( python_seed )
seeds = np.random.random_integers(0, 1000, 3)
return `seeds[0]` + " " + `seeds[1]` + " " + `seeds[2]+10`
def simulate( self, nsam = 2, loci_length = 0, mutation_rate = 0, num_loci = 1, ith_run = 0, additionalFlags = ""):
"""
Generate file names and prefix for future simulations
Generate ms data
"""
self.simulate_command(nsam, loci_length, mutation_rate, num_loci, ith_run, additionalFlags)
os.system( self.ms_command)
self.ms_sim_post_process(nsam)
def ms_sim_post_process(self, nsam):
"""
Calling shell commands for some string manipulation for the ms output.
Extract
The postion where mutation occurs
Segregating site data
Genealogies
TMRCA of the genealogies
Number of basepairs that shared the same genealogy
"""
grep_position = "grep \'positions\' " + self.ms_out_file_prefix + " | sed -e \'s/positions: //\' > " + self.position_file
#print grep_position
grep_seg = "tail" + __space__ + "-"+`nsam` + __space__ + self.ms_out_file_prefix + " > " + self.seg_file
#print grep_seg
grep_tree = "grep \';\' " + self.ms_out_file_prefix + " | sed -e 's/\\[.*\\]//g' > " + self.tree_file
grep_tmrca = "hybrid-Lambda -gt " + self.tree_file + " -tmrca -o " + self.ms_out_file_prefix
grep_changeat = "grep \';\' " + self.ms_out_file_prefix + " | sed -e 's/\\[//g' | sed -e 's/\\].*;//g' > " + self.mschange_file
os.system( grep_position )
os.system( grep_seg )
os.system( grep_tree )
os.system( grep_tmrca )
os.system( grep_changeat )
def topTime2N0(self):
"""
Returns:
topTime are scaled in 2N0 unit!
"""
return self.topTime() * 2
def topTime(self):
"""
Returns:
topTime are scaled in 4N0 unit!
"""
#time = self.Time[-1]*2.5 if len(self.Time)>1 else 2 # In case top time is zero
#return int( round(time + 0.5) ) # round up
#time = self.Time[-1]*5 if len(self.Time)>1 else 2 # In case top time is zero
time = self.Time[-1] if len(self.Time)>1 else 2 # Set the top time to the maximal value defined by the pop structure. To see what result this returns for smcsmc.
return time # round up
def function_call(self, command):
"""
Record the function calling command into file *.call
Args:
command: Function calling string.
"""
command_file = open(self.ms_out_file_prefix + ".call" , 'w')
command_file.write(self.ms_command +'\n')
command_file.write(command + '\n')
command_file.close()
if __name__ == "__main__":
#try:
_case = sys.argv[1]
_nsam = int(sys.argv[2])
_ith_run = int(sys.argv[3])
#print _case, _nsam, _ith_run
_param = ms_param_of_case( _case, _nsam )
_param.fixed_seed = True
_param.printing()
if len(sys.argv) > 4:
_param.post_init_process_seqlen( sys.argv[4] )
_additionalFlags = ""
if len(sys.argv) > 5:
_additionalFlags = sys.argv[5]
_missing = False
if len(sys.argv) > 6:
if sys.argv[5] == "missing":
_missing = True
_param.simulate( _nsam, ith_run = _ith_run, additionalFlags = _additionalFlags )
#seqlen_in, position_file_name_in, seg_file_name_in, segment_prefix_in
ms.To_seg(`_param.seqlen`, _param.position_file, _param.seg_file, _param.ms_out_file_prefix, _missing )
#ms.To_vcf(`_param.seqlen`, _param.position_file, _param.seg_file, _param.ms_out_file_prefix, "vcf")
#ms.To_vcf(`_param.seqlen`, _param.position_file, _param.seg_file, _param.ms_out_file_prefix, "gvcf")
#ms.To_vcf(`_param.seqlen`, _param.position_file, _param.seg_file, _param.ms_out_file_prefix, "rgvcf")
#except:
#print "oops"