-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathpred.py
88 lines (70 loc) · 2.87 KB
/
pred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from __future__ import print_function, unicode_literals
import argparse
from tqdm import tqdm
from utils.fh_utils import *
def main(base_path, pred_out_path, pred_func, set_name=None):
"""
Main eval loop: Iterates over all evaluation samples and saves the corresponding predictions.
"""
# default value
if set_name is None:
set_name = 'evaluation'
# init output containers
xyz_pred_list, verts_pred_list = list(), list()
K_list = json_load(os.path.join(base_path, '%s_K.json' % set_name))
scale_list = json_load(os.path.join(base_path, '%s_scale.json' % set_name))
# iterate over the dataset once
for idx in tqdm(range(db_size(set_name))):
if idx >= db_size(set_name):
break
# load input image
img = read_img(idx, base_path, set_name)
# use some algorithm for prediction
xyz, verts = pred_func(
img,
np.array(K_list[idx]),
scale_list[idx]
)
xyz_pred_list.append(xyz)
verts_pred_list.append(verts)
# dump results
dump(pred_out_path, xyz_pred_list, verts_pred_list)
def dump(pred_out_path, xyz_pred_list, verts_pred_list):
""" Save predictions into a json file. """
# make sure its only lists
xyz_pred_list = [x.tolist() for x in xyz_pred_list]
verts_pred_list = [x.tolist() for x in verts_pred_list]
# save to a json
with open(pred_out_path, 'w') as fo:
json.dump(
[
xyz_pred_list,
verts_pred_list
], fo)
print('Dumped %d joints and %d verts predictions to %s' % (len(xyz_pred_list), len(verts_pred_list), pred_out_path))
def pred_template(img, K, scale):
""" Predict joints and vertices from a given sample.
img: (224, 224, 30 RGB image.
K: (3, 3) camera intrinsic matrix.
scale: () scalar metric length of the reference bone,
which was calculated as np.linalg.norm(xyz[9] - xyz[10], 2),
i.e. it is the length of the proximal phalangal bone of the middle finger.
"""
# TODO: Put your algorithm here, which computes (metric) 3D joint coordinates and 3D vertex positions
xyz = np.zeros((21, 3)) # 3D coordinates of the 21 joints
verts = np.zeros((778, 3)) # 3D coordinates of the shape vertices
return xyz, verts
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Show some samples from the dataset.')
parser.add_argument('base_path', type=str,
help='Path to where the FreiHAND dataset is located.')
parser.add_argument('--out', type=str, default='pred.json',
help='File to save the predictions.')
args = parser.parse_args()
# call with a predictor function
main(
args.base_path,
args.out,
pred_func=pred_template,
set_name='evaluation'
)