-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathsampler.py
205 lines (171 loc) · 7.85 KB
/
sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
from time import time
import argparse
# import setGPU
import torch
from architectures import get_architecture
from datasets import get_dataset, DATASETS, get_num_classes, get_input_dimension
from distribution import StandardGaussian, GeneralGaussian, LinftyGaussian, LinftyGeneralGaussian, L1GeneralGaussian
from tensorboardX import SummaryWriter
import smooth
from th_heuristic import get_beta, get_beta2
EPS = 1e-5
parser = argparse.ArgumentParser(description='Sampling for Pa')
parser.add_argument("dataset", choices=DATASETS, help="which dataset")
parser.add_argument("base_classifier", type=str, help="path to saved pytorch model of base classifier")
parser.add_argument("std", type=float, help="noise std")
parser.add_argument("--disttype", type=str, help="smoothing distribution type", choices=['gaussian', 'general-gaussian',
'infty-gaussian',
'infty-general-gaussian',
'L1-general-gaussian'])
parser.add_argument("--outbase", type=str, default="data/sampling")
parser.add_argument("--batch", type=int, default=1024, help="batch size")
parser.add_argument("--k", type=int, default=None, help="the parameter for general-gaussian, usually should be close but slightly smaller than d/2")
parser.add_argument("--skip", type=int, default=10, help="how many examples to skip")
parser.add_argument("--start", type=int, default=-1, help="start from max(0, start)")
parser.add_argument("--stop", type=int, default=-1, help="stop when encounter this, i.e., [start, stop)")
parser.add_argument("--split", choices=["train", "test"], default="test", help="train or test set")
parser.add_argument("--N0", type=int, default=100)
parser.add_argument("--N", type=int, default=100000, help="number of samples to use")
parser.add_argument("--alpha", type=float, default=0.0005, help="failure probability")
parser.add_argument("--th", default=1.0, help="Specific for general-gaussian with hard thresholded norm")
parser.add_argument('--gpu', default=None, type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
parser.add_argument('--comment', default=None, type=str, help='special annotation to the model type')
args = parser.parse_args()
if __name__ == '__main__':
if args.gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
if not os.path.exists(args.outbase):
os.makedirs(args.outbase)
# load the base classifier
chkp = torch.load(args.base_classifier)
model = get_architecture(chkp["arch"], args.dataset, args.comment)
model.load_state_dict(chkp['state_dict'])
model.eval()
dataset = get_dataset(args.dataset, args.split)
num_classes = get_num_classes(args.dataset)
d = get_input_dimension(args.dataset)
# obtain the filename cropped by extension
out_dir = str(os.path.basename(args.base_classifier))
out_dir = '.'.join(out_dir.split('.')[:-1])
out_dir = os.path.join(args.outbase, out_dir)
file_name = f'{args.disttype}-{args.k}-{args.std}-{args.N}-{args.alpha}'
if isinstance(args.th, str) or abs(args.th - 1.0) > EPS:
file_name += f'-{args.th}'
file_name += '.txt'
print(f'output to {os.path.join(out_dir, file_name)}')
# init tensorboard writer
writer = SummaryWriter(os.path.join(out_dir, f'{args.disttype}-{args.k}-{args.std}-{args.N}-{args.alpha}'))
if not os.path.exists(out_dir):
os.makedirs(out_dir)
f = open(os.path.join(out_dir, file_name), 'a')
if not isinstance(args.th, float) and args.th[0].isdigit():
args.th = float(args.th)
if args.disttype == 'gaussian':
distribution = StandardGaussian(d, args.std)
elif args.disttype == 'general-gaussian':
distribution = GeneralGaussian(d, args.k, args.std, th=args.th if isinstance(args.th, float) else 1.0)
elif args.disttype == 'infty-gaussian':
distribution = LinftyGaussian(d, args.std)
elif args.disttype == 'infty-general-gaussian':
distribution = LinftyGeneralGaussian(d, args.k, args.std)
elif args.disttype == 'L1-general-gaussian':
distribution = L1GeneralGaussian(d, args.k, args.std)
else:
raise NotImplementedError('Unsupported smoothing distribution')
print(distribution.info())
"""
Print metainfo
"""
print(f"""
x disttype {args.disttype}
x k {args.k}
x std {args.std}
x N {args.N}
x alpha {args.alpha}
""", file=f)
f.flush()
"""
Finish print metainfo
"""
"""
Prepare for heuristically select beta
"""
if isinstance(args.th, str):
# read old data
old_pas = dict()
old_pars = dict()
old_file_name = f'{args.disttype}-{args.k}-{args.std}-{args.N}-{args.alpha}.txt'
with open(os.path.join(out_dir, old_file_name), 'r') as fin:
for line in fin.readlines():
if line.startswith('o'):
things = line.split(' ')
old_pas[int(things[1])] = float(things[2])
old_pars[int(things[1])] = float(things[3])
stime = time()
tot_p1low = 0.
tot_instance = 0
for i in range(len(dataset)):
# only certify every args.skip examples, and stop after args.max examples
if i % args.skip != 0:
continue
if i < args.start:
continue
if i == args.stop:
break
tot_instance += 1
(x, label) = dataset[i]
x = x.cuda()
sstime = time()
nA_base, realN_base = 0, 0
local_alpha = args.alpha
##### heuristic region #####
##### should be made consistent with the computation function algo.py #####
if args.th == 'x':
beta = get_beta(old_pas[i])
print(f' old pa = {old_pas[i]} leads to beta = {beta}')
distribution.set_th(beta)
if args.th == 'x+':
if old_pars[i] >= 1.0 - 1e-8:
print(f' old pa_r equals to 1, leads to another round of sampling')
distribution.set_th(1.0)
# aggregate previous samples
nA_base += args.N
realN_base += args.N
local_alpha *= 2.
else:
beta = get_beta(old_pas[i])
print(f' old pa = {old_pas[i]} leads to beta = {beta}')
distribution.set_th(beta)
if args.th == 'x2':
beta = get_beta2(old_pas[i])
print(f' old pa = {old_pas[i]} leads to beta = {beta}')
distribution.set_th(beta)
# a rarely-used setting
if args.th == 'x2+':
if old_pars[i] >= 1.0 - 1e-9:
print(f' old pa_r equals to 1, leads to another round of sampling')
distribution.set_th(1.0)
# aggregate previous samples
nA_base += args.N
realN_base += args.N
local_alpha *= 2.
else:
beta = get_beta2(old_pas[i])
print(f' old pa = {old_pas[i]} leads to beta = {beta}')
distribution.set_th(beta)
# draw more samples of f(x + epsilon)
nA, realN = smooth.sample_noise(model, x, distribution, label, args.N, num_classes, args.batch)
# use these samples to estimate a lower bound on pA
# nA = counts_estimation[label].item()
nA, realN = nA + nA_base, realN + realN_base
print(f' {nA} out of {realN} sampled')
# confidence interval
p1low, p1high = smooth.confidence_bound(nA, realN, local_alpha)
print(f'#{i} [{p1low}, {p1high}] {time() - sstime} s ({time() - stime} s)')
print(f"o {i} {p1low} {p1high}", file=f)
f.flush()
tot_p1low += p1low
writer.add_scalar('avg-p1low', tot_p1low / tot_instance, i)
f.close()