-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
410 lines (363 loc) · 18.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
from multiprocessing.pool import Pool, ThreadPool
import argparse
from tensorboardX import SummaryWriter, GlobalSummaryWriter
import os
from time import time, sleep
from random import random
import numpy as np
from scipy.stats import gamma
from datasets import get_input_dimension
from algo.algo import calc_fast_beta_th, check
from utils import read_pAs, read_orig_Rs
from distribution import StandardGaussian, GeneralGaussian, LinftyGaussian, LinftyGeneralGaussian, L1GeneralGaussian
# ====== global settings =======
workers = 10
# workers can be changed by argparse
ORIG_R_EPS = 5e-5
DUAL_EPS = 1e-8
# The above eps works well (and guarantees soundness in practical data) if using argparse's precision
# =============================
dist = None
def orig_radius_pool_func(args):
"""
Paralleled original radius computing function
:param args:
:return:
"""
no, pA, _ = args
stime = time()
print('On #', no)
r = dist.certify_radius(pA)
print('#', no, 'done:', time() - stime, 's')
return r, time() - stime
def calc_orig_radius(base_dir, out_base_dir, disttype, d, k, std, aux_stds, N, alpha):
"""
The entrance function, or the dispatcher, for the original radius computation
:param base_dir:
:param out_base_dir:
:param disttype:
:param d:
:param k:
:param std:
:param aux_stds:
:param N:
:param alpha:
:return:
"""
global dist
if not os.path.exists(out_base_dir):
os.makedirs(out_base_dir)
if disttype == 'gaussian' or disttype == 'gaussian-th':
dist = StandardGaussian(d, std)
elif disttype == 'general-gaussian' or disttype == 'general-gaussian-th':
dist = GeneralGaussian(d, k, std)
reslist = list()
restimelist = list()
if disttype == 'gaussian' or disttype == 'gaussian-th':
fname = f'gaussian-None-{std}-{N}-{alpha}.txt'
outname = f'orig-rad-{disttype}-None-{std}-{N}-{alpha}.txt'
timename = 'time-' + outname
f = open(os.path.join(out_base_dir, outname), 'a')
ftime = open(os.path.join(out_base_dir, timename), 'a')
writer = SummaryWriter(os.path.join(out_base_dir, f'orig-rad-{disttype}-None-{std}-{N}-{alpha}'))
pAlist = read_pAs(os.path.join(base_dir, fname))
timestamp = time()
# list of [no, p1low, p1high]
for item in pAlist:
reslist.append((item[0], dist.certify_radius(item[1])))
print(*(reslist[-1]), file=f)
f.flush()
restimelist.append((item[0], time() - timestamp))
print(*(restimelist[-1]), file=ftime)
ftime.flush()
timestamp = time()
elif disttype == 'general-gaussian' or disttype == 'general-gaussian-th':
samp_disttype = 'general-gaussian'
fname = f'{samp_disttype}-{k}-{std}-{N}-{alpha}.txt'
outname = f'orig-rad-{disttype}-{k}-{std}-{N}-{alpha}.txt'
timename = 'time-' + outname
f = open(os.path.join(out_base_dir, outname), 'a')
ftime = open(os.path.join(out_base_dir, timename), 'a')
writer = SummaryWriter(os.path.join(out_base_dir, f'orig-rad-{disttype}-{k}-{std}-{N}-{alpha}'))
pAlist = read_pAs(os.path.join(base_dir, fname))
res = Pool(workers).map(orig_radius_pool_func, pAlist)
for i in range(len(res)):
print('On #', pAlist[i][0])
now_r, now_time = res[i]
reslist.append(tuple([pAlist[i][0], now_r]))
print(*(reslist[-1]), file=f)
f.flush()
restimelist.append(tuple([pAlist[i][0], now_time]))
print(*(restimelist[-1]), file=ftime)
ftime.flush()
f.close()
ftime.close()
for item in reslist:
# res: arrary of (no, r)
writer.add_scalar('orig-radius', item[1], item[0])
print(reslist)
return reslist
def combine_info(sampling_dir, orig_rad_dir, disttype, d, k, std, aux_stds, N, alpha):
"""
info list format:
Each row is a list - a sample, in ascending order.
The list format: [no, original R, p1L, p1U, list of other stds]
The list of other stds follows the order of aux_stds.
Each item is [p1betaL, p1betaU]
"""
if disttype == 'general-gaussian' or disttype == 'gaussian':
orig_rad_fname = f'orig-rad-{disttype}-{k}-{std}-{N}-{alpha}.txt'
info_list = read_orig_Rs(os.path.join(orig_rad_dir, orig_rad_fname), aux_stds)
index_mapper = dict()
for i, item in enumerate(info_list):
index_mapper[item[0]] = i
main_pA_fname = f'{disttype}-{k}-{std}-{N}-{alpha}.txt'
data = read_pAs(os.path.join(sampling_dir, main_pA_fname))
for item in data:
if item[0] in index_mapper:
# p1low
info_list[index_mapper[item[0]]][2] = item[1]
# p1high
info_list[index_mapper[item[0]]][3] = item[2]
for i, aux_std in enumerate(aux_stds):
aux_pA_fname = f'{disttype}-{k}-{aux_std}-{N}-{alpha}.txt'
data = read_pAs(os.path.join(sampling_dir, aux_pA_fname))
for item in data:
if item[0] in index_mapper:
info_list[index_mapper[item[0]]][4][i][0], info_list[index_mapper[item[0]]][4][i][1] = item[1], item[2]
return info_list
elif disttype == 'general-gaussian-th' or disttype == 'gaussian-th':
orig_rad_fname = f'orig-rad-{disttype[:-3]}-{k}-{std}-{N}-{alpha}.txt'
info_list = read_orig_Rs(os.path.join(orig_rad_dir, orig_rad_fname), aux_stds)
index_mapper = dict()
for i, item in enumerate(info_list):
index_mapper[item[0]] = i
main_pA_fname = f'{disttype[:-3]}-{k}-{std}-{N}-{alpha}.txt'
data = read_pAs(os.path.join(sampling_dir, main_pA_fname))
for item in data:
if item[0] in index_mapper:
# p1low
info_list[index_mapper[item[0]]][2] = item[1]
# p1high
info_list[index_mapper[item[0]]][3] = item[2]
for i, aux_std in enumerate(aux_stds):
aux_pA_fname = f'{disttype[:-3]}-{k}-{std}-{N}-{alpha}-{aux_std}.txt'
data = read_pAs(os.path.join(sampling_dir, aux_pA_fname))
for item in data:
if item[0] in index_mapper:
info_list[index_mapper[item[0]]][4][i][0], info_list[index_mapper[item[0]]][4][i][1] = item[1], item[2]
return info_list
else:
raise Exception('unsupported disttype')
bunk_disttype = ''
bunk_radius_d = 0
bunk_radius_k = 0
bunk_radius_sigma = 0.
bunk_radius_beta = 0.
bunk_radius_mode = None
bunk_radius_unit = 0.
bunk_radius_eps = 0.
bunk_global_writer = None
def new_radius_pool_func(args):
no, orig_r, pAsigmaL, pAsigmaR, pAbetaL, pAbetaR = args
print('On #', no)
stime = time()
new_r = orig_r
if (orig_r <= 1e-5 and pAsigmaL <= 0.1 and pAbetaL <= 0.1) or pAbetaL is None or pAbetaR is None:
pass
else:
if orig_r <= 1e-5:
print('try even though orig_r is 0')
if bunk_radius_mode == 'grid':
slot = int(orig_r / bunk_radius_unit)
new_r = orig_r
while True:
slot += 1
try:
# ! suppress possible exceptions...
print(f'check rad = {slot * bunk_radius_unit} for pA = {pAsigmaL} (old rad = {orig_r})')
if check(bunk_disttype, slot * bunk_radius_unit,
bunk_radius_d, bunk_radius_k, bunk_radius_sigma, bunk_radius_beta,
pAsigmaL, pAsigmaR, pAbetaL, pAbetaR,
eps=DUAL_EPS):
new_r = bunk_radius_unit * slot
print(f' #{no} New r = {new_r}')
else:
break
except Exception as e:
# print(type(e))
print('exception encountered')
print(e)
break
# raise e
else:
r_delta = bunk_radius_eps
while True:
print(f' #{no} Check radius +', r_delta)
if r_delta > 50.0 * orig_r and orig_r >= 0.1:
# I don't quite believe DSRS can improve over 5000% in practice (though theoretically can as described in our paper)
raise Exception(f'Suspected numerical error @ #{no} with orig R = {orig_r}, pA in [{pAsigmaL}, {pAsigmaR}], pAbeta in [{pAbetaL}, {pAbetaR}]')
if check(bunk_disttype, orig_r + r_delta,
bunk_radius_d, bunk_radius_k, bunk_radius_sigma, bunk_radius_beta,
pAsigmaL, pAsigmaR, pAbetaL, pAbetaR, eps=DUAL_EPS):
r_delta *= 2.
else:
r_delta /= 2.
break
if r_delta >= bunk_radius_eps:
new_r = orig_r + r_delta
if bunk_radius_mode == 'precise':
rad_L, rad_R = orig_r + r_delta, orig_r + 2. * r_delta
while rad_R - rad_L > bunk_radius_eps:
mid = (rad_L + rad_R) / 2.0
res = check(bunk_disttype, mid,
bunk_radius_d, bunk_radius_k, bunk_radius_sigma, bunk_radius_beta,
pAsigmaL, pAsigmaR, pAbetaL, pAbetaR, eps=DUAL_EPS)
if res:
rad_L = mid
else:
rad_R = mid
new_r = rad_L
print(f'Result on #{no} (sigma={bunk_radius_sigma}, beta={bunk_radius_beta}) R = {orig_r} + {new_r - orig_r} [time={time() - stime} s]')
runtime = time() - stime
# avoid conflict on global writer
sleep(random())
bunk_global_writer.add_scalar(f'new-radius({bunk_radius_mode}-mode)', new_r)
return no, new_r, new_r - orig_r, ((new_r - orig_r) / max(orig_r, 1e-5)), runtime
def bunk_radius_calc(full_info, result_dir, disttype, d, k, sigma, betas, N, alpha, mode, unit, eps):
"""
The entrance function, or the dispatcher, for the improved radius computation
:param full_info: the full info list, [[no, radius, p1low, p1high, [[p2low, p2high], ...]]
:param result_dir: the directory to save the result
:param d: input dimension
:param k: for general Gaussian, parameter k; for others, it is None
:param sigma: variance scaling
:param betas: for general Gaussian or standard Gaussian, the list of betas to derive improved radius; for others, it is an empty list
:param N: number of samples
:param alpha: confidence level
:param mode: must be 'grid'/'fast'/'precise'
:param unit: grid search granularity
:param eps: precision control
:return: None
"""
global bunk_disttype, bunk_radius_d, bunk_radius_k, bunk_radius_sigma, bunk_radius_beta
global bunk_radius_mode, bunk_radius_unit, bunk_radius_eps
global bunk_global_writer
if not os.path.exists(result_dir):
os.makedirs(result_dir)
print('output to ' + result_dir)
bunk_disttype = disttype
bunk_radius_d, bunk_radius_k = d, k
bunk_radius_mode, bunk_radius_unit, bunk_radius_eps = mode, unit, eps
if bunk_disttype == 'general-gaussian' or bunk_disttype == 'gaussian' \
or bunk_disttype == 'general-gaussian-th' or bunk_disttype == 'gaussian-th':
for i, beta in enumerate(betas):
print(f'Now on beta = {beta}')
# compute the real beta
if bunk_disttype == 'general-gaussian':
bunk_radius_sigma = np.sqrt(d / (d - 2.0 * k)) * sigma
bunk_radius_beta = np.sqrt(d / (d - 2.0 * k)) * beta
elif bunk_disttype == 'general-gaussian-th':
bunk_radius_sigma = np.sqrt(d / (d - 2.0 * k)) * sigma
bunk_radius_beta = beta
else:
bunk_radius_sigma = sigma
bunk_radius_beta = beta
fname = f'new-rad-{disttype}-{k}-{sigma}-{beta}-{N}-{alpha}.txt'
ftimename = 'time-' + fname
f = open(os.path.join(result_dir, fname), 'a')
ftime = open(os.path.join(result_dir, ftimename), 'a')
bunk_global_writer = GlobalSummaryWriter(os.path.join(result_dir, f'new-rad-{disttype}-{k}-{sigma}-{beta}-{N}-{alpha}'))
view = [[item[0], item[1], item[2], item[3], item[4][i][0], item[4][i][1]] for item in full_info]
res = Pool(workers).map(new_radius_pool_func, view)
[print(item) for item in res]
[print(*(item[:-1]), file=f) for item in res]
[print(item[-1], file=ftime) for item in res]
f.close()
ftime.close()
parser = argparse.ArgumentParser(description='The main script for DSRS')
parser.add_argument('dataset', choices=['mnist', 'cifar10', 'imagenet', 'tinyimagenet'],
description='We rely on the dataset information to obtain the input dimension.'
'New datasets can be easily integrated.')
parser.add_argument('task', choices=['origin', 'improved'],
description='The workflow is to first use the classical Nayman-Pearson certification to compute the radius -- choices = origin,'
'then use the DSRS to compute the improved radius -- choices = improved.'
'They are separate runs')
parser.add_argument('model', type=str,
description='We load the sampling probability and old radius from the current folder: sampling_dir/model, original_rad_dir/model,'
'and save the result to new_rad_dir/model')
parser.add_argument('disttype', choices=['general-gaussian', 'gaussian',
'general-gaussian-th', 'gaussian-th'],
description='general-gaussian: generalized Gaussian as P, generalized Gaussian with a different variance as Q;'
'gaussian: standard Gaussian as P, standard Gaussian with a different variance as Q (this option obtains invisible improvements when input dimension >= 40);'
'general-gaussian-th: generalized Gaussian as P, generalzied Gaussian with threshold cutting as Q;'
'gaussian-th: standard Gaussian as P, generalzied Gaussian with threshold cutting as Q (this option obtains invisible improvements when input dimension >= 40).')
parser.add_argument('sigma', type=float,
description="sigma of P distribution. Note: as recorded in the paper, here it is sigma instead of sigma'")
parser.add_argument('N', type=int,
description='Sampling number. This parameter does not make a difference to the computational method itself. '
'It is just for extracting the correct sampling info file whose name includes the sampling number information.')
parser.add_argument('alpha', type=float,
description='The certification confidence. Similar to N, this parameter does not make a difference to the computational method itself')
parser.add_argument('-b', action='append', nargs='+',
description='The sigma of Q distribution (if using general-gaussian or gaussian as disttype), or '
'the percentile of thresholding if a real number between 0 and 1 or percentitle selection heuristics if x, x2, x+, or x2+ (if using general-gaussian-th or gaussian-th as disttype)'
'+ insteads for heuristic that includes the fall-back strategy. x+ has the best performance empirically.'
'Multiple options can be specified at the same time, and the script will run the certification for them respectively.')
parser.add_argument("--k", type=int, default=None,
description="the generalized Gaussian's parameter k. See the paper for the detail")
parser.add_argument('--sampling_dir', type=str, default='data/sampling',
description="folder for extracting the sampling pA info.")
parser.add_argument('--original_rad_dir', type=str, default='data/orig-radius',
description="folder for extracting (if task = improved) or outputing (if task = origin) the original radius computed by Neyman-Pearson")
parser.add_argument('--new_rad_dir', type=str, default='data/new-radius',
description="folder for outputing the new radius compuated by DSRS")
parser.add_argument('--improve_mode', choices=['grid', 'fast', 'precise'], default='grid',
description='the strategy for trying the new radius. Empirically, the grid strategy is sufficient if we do not need the precise new radius.')
parser.add_argument('--improve_unit', type=float, default=0.05)
parser.add_argument('--improve_eps', type=float, default=0.0001)
parser.add_argument('--workers', type=int, default=10,
description='# processes for parallelized mapping on CPU.')
parser.add_argument('--core_affinity', type=str, default='')
args = parser.parse_args()
if __name__ == '__main__':
if args.core_affinity is not None and len(args.core_affinity) > 0:
os.system("taskset -p -c %s %d" % (args.core_affinity, os.getpid()))
workers = args.workers
d = get_input_dimension(args.dataset)
# init for fast Gaussian computation
calc_fast_beta_th(d)
k = args.k
sigma = args.sigma
if args.b is not None:
betas = args.b[0]
else:
betas = list()
N = args.N
alpha = args.alpha
betas = [float(b) if isinstance(b, str) and b[0].isdigit() else b for b in betas]
print(f"""
==============
Metainfo:
task = {args.task}
model = {args.model}
distype = {args.disttype}
d = {d}
k = {k}
sigma = {sigma}
betas = {betas}
N = {N}
alpha = {alpha}
==============
""")
if args.task == 'origin':
print('Selected task: compute the original R')
calc_orig_radius(os.path.join(args.sampling_dir, args.model), os.path.join(args.original_rad_dir, args.model),
args.disttype, d, k, sigma, betas, N, alpha)
elif args.task == 'improved':
print('Selected task: compute the improved R')
full_info = combine_info(os.path.join(args.sampling_dir, args.model), os.path.join(args.original_rad_dir, args.model),
args.disttype, d, k, sigma, betas, N, alpha)
bunk_radius_calc(full_info, os.path.join(args.new_rad_dir, args.model),
args.disttype, d, k, sigma, betas, N, alpha,
args.improve_mode, args.improve_unit, args.improve_eps)