-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdynamicclient.py
85 lines (67 loc) · 3.05 KB
/
dynamicclient.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from modeledclient import ModeledClient
def create_client(model, cls_name='MyClient', cls_bases=None):
"""Creates a new client based on an API model
:type model: dict
:param model: A loaded JSON model representing the API
:type cls_name: str
:param cls_name: The name of the client class to generate
:type cls_bases: tuple
:param cls_bases: A tuple of classes that the client class and the
instantiated client should inherit from.
:returns: A client instance based on the provided API model
"""
cls_name = cls_name
# If no class bases were provided, then default to the ModeledClient class.
if not cls_bases:
cls_bases = (ModeledClient,)
cls_props = {}
# Iterate over all of the available operation models.
for operation_name, operation_model in model['operations'].items():
# Get the proxy method for that operation.
method = _get_client_method(operation_name)
# Set the name for the method.
method.__name__ = str(operation_name)
# Create docstrings for the method.
method.__doc__ = _get_docstring(operation_model)
# Add the method to the class.
cls_props[operation_name] = method
# Create the client class.
cls = type(cls_name, cls_bases, cls_props)
# Return an instance of the class back.
return cls(model)
def _get_client_method(operation_name):
# Define a function that uses the provided operation name to invoke the
# make modeled_api_call.
def _api_call(self, *args, **kwargs):
return self.make_modeled_api_call(
operation_name, *args, **kwargs)
return _api_call
def _get_docstring(operation_model):
# A helper function to get the docstring based on a model.
# Add the top-level description of the method.
doc_str = operation_model['documentation']
doc_str += '\n\n'
# Add the input description as parameters to the docstring.
input_model = operation_model['input']
# If the top-level input model is a list, then arguments should be
# provided as positional arguments.
if input_model['type'] == 'list':
doc_str += _get_param_docstring(
'args', input_model['members']['type'] + '(s)',
input_model['documentation']
)
# If the top-level input model is a structure, then arguments should
# be provided as keyword arguments.
if input_model['type'] == 'structure':
for param_name, param_value in input_model['members']:
doc_str += _get_param_docstring(
param_name, param_value['type'], param_value['documentation']
)
# Add the output description as a return value for the docstring.
doc_str += '\n:rtype: %s\n' % operation_model['output']['type']
doc_str += ':returns: %s\n' % operation_model['output']['documentation']
return doc_str
def _get_param_docstring(param_name, param_type, param_documentation):
param_str = ':type %s: %s' % (param_name, param_type)
param_str += '\n:param %s: %s\n' % (param_name, param_documentation)
return param_str