-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathp055.py
41 lines (36 loc) · 1.02 KB
/
p055.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#!/usr/bin/env python
# Project Euler
# http://projecteuler.net/problem=55
# Problem 55
#
# A number that never forms a palindrome through the reverse and add
# process is called a Lychrel number.
#
# We shall assume that a number is Lychrel until proven otherwise. In
# addition you are given that for every number below ten-thousand, it
# will either (i) become a palindrome in less than fifty iterations,
# or, (ii) no one, with all the computing power that exists, has managed
# so far to map it to a palindrome.
#
# How many Lychrel numbers are there below ten-thousand?
def isPalindrome(n):
n = str(n)
for i in xrange(len(n)):
if n[i]!=n[len(n)-1-i]: return False
return True
def isLychrel(n):
iterations=1
n+=int(str(n)[::-1])
#print n
while( not isPalindrome(n) and iterations<49 ):
n+=int(str(n)[::-1])
iterations+=1
# print n
if iterations==49:
if not isPalindrome(n): return True
return False
if __name__ == "__main__":
lychrels=0
for i in xrange(1,10000):
if isLychrel(i): lychrels+=1
print lychrels