-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathp037.py
59 lines (50 loc) · 1.54 KB
/
p037.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!/usr/bin/env python
# Project Euler: problem 37
# The number 3797 has an interesting property. Being prime itself, it is
# possible to continuously remove digits from left to right, and remain
# prime at each stage: 3797, 797, 97, and 7. Similarly we can work from
# right to left: 3797, 379, 37, and 3.
# Find the sum of the only eleven primes that are both truncatable from
# left to right and right to left.
# NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.
import math
def trialdiv(n,primes=[2]):
if(n&1==0 or n<2): return (n==2)
for i in primes:
if(n%i==0): return (n==i)
for i in xrange(primes[len(primes)-1],int(math.sqrt(n))+1):
ifprime = True
for j in primes:
if i%j == 0:
ifprime = False
break
if ifprime:
if n%i==0: return False
if( not i in primes ): primes.append(i)
#print primes
for i in primes:
if n%i == 0:
return False
return True
if __name__ == "__main__":
primes = [2]
truncprimes = []
for i in xrange(3,1000000):
if trialdiv(i): primes.append(i)
for i in primes[primes.index(7)+1:]:
# look at left to right first; initial step already done
tmpi = str(i)
digitnum = 0
fail = False
for j in reversed(range(1,len(tmpi))):
if(not trialdiv(i%(10**j),primes=primes)): fail = True; break
digitnum += 1
if fail: continue
# look at left to right
fail = False
for j in xrange(1,len(tmpi)):
if(not trialdiv(int(tmpi[:-j]),primes=primes)): fail = True; break
if fail: continue
# if passed all tests, part of answer
truncprimes.append(i)
print sum(truncprimes)