forked from krzysztofrusek/net2vec
-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathgraph_nn2.py
333 lines (264 loc) · 12.2 KB
/
graph_nn2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import tensorflow as tf
import numpy as np
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
import datetime
import argparse
import os
import io
parser = argparse.ArgumentParser(description='Train the graph neural network')
parser.add_argument('--pad', help='extra padding for node embeding', type=int, default=12)
parser.add_argument('--pas', help='number of passes', type=int, default=4)
parser.add_argument('--batch_size', help='batch_size', type=int, default=64)
parser.add_argument('--lr', help='learning rate', type=float, default=0.001)
parser.add_argument('--log_dir', help='log dir', type=str, default='log')
parser.add_argument('--rn', help='number of readout neurons', type=int, default=8)
parser.add_argument('--buf', help='buffer', type=int, default=200)
parser.add_argument('-I', help='number of iteration', type=int, default=80000)
parser.add_argument('--eval', help='evaluatioin file', type=str, default='eval.tfrecords')
parser.add_argument('--train', help='train file', type=str, default='train.tfrecords')
parser.add_argument('--test', help='test file', type=str, default='test.tfrecords')
parser.add_argument('--ninf', help='Number of hidden neurions in inference layer', type=int, default=256)
parser.add_argument('--Mhid', help='Number of hidden neurons in message layer', type=int, default=8)
def stat_args(name, shift=0,scale=1):
parser.add_argument('--{}-shift'.format(name),
help='Shift for {} (usualy np.mean)'.format(name) ,
type=float, default=shift)
parser.add_argument('--{}-scale'.format(name),
help='Scale for {} (usualy np.std)'.format(name) ,
type=float, default=scale)
stat_args('mu',shift=0.34, scale=0.27)
stat_args('W',shift=55.3, scale=22.0)
if __name__ == '__main__':
args = parser.parse_args()
else:
args = parser.parse_args([])
def test():
return args.I
N_PAD=args.pad
N_PAS=args.pas
N_H=2+N_PAD
REUSE=None
batch_size=args.batch_size
#tf.enable_eager_execution()
def parse(serialized):
with tf.device("/cpu:0"):
with tf.name_scope('parse'):
features = tf.parse_single_example(
serialized,
features={
'mu': tf.VarLenFeature(tf.float32),
"Lambda": tf.VarLenFeature( tf.float32),
"W":tf.FixedLenFeature([],tf.float32),
"R":tf.VarLenFeature(tf.float32),
"first":tf.VarLenFeature(tf.int64),
"second":tf.VarLenFeature(tf.int64)})
ar=[(tf.sparse_tensor_to_dense(features['mu'])-args.mu_shift)/args.mu_scale,
(tf.sparse_tensor_to_dense(features['Lambda']))]
x=tf.stack(ar,axis=1)
e=tf.sparse_tensor_to_dense(features['R'])
# cecha jest od 0-1
#e = (tf.expand_dims(e,axis=1)-0.24)/0.09
e = tf.expand_dims(e,axis=1)
first=tf.sparse_tensor_to_dense(features['first'])
second=tf.sparse_tensor_to_dense(features['second'])
W = (features['W']-args.W_shift)/args.W_scale
return ((x,e,first,second),W)
def cummax(alist, extractor):
with tf.name_scope('cummax'):
maxes = [tf.reduce_max( extractor(v) ) + 1 for v in alist ]
cummaxes = [tf.zeros_like(maxes[0])]
for i in range(len(maxes)-1):
cummaxes.append( tf.math.add_n(maxes[0:i+1]))
return cummaxes
def transformation_func(it, batch_size=4):
with tf.name_scope("transformation_func"):
vs = [it.get_next() for _ in range(batch_size)]
first_offset = cummax(vs,lambda v:v[0][2] )
second_offset = cummax(vs,lambda v:v[0][3] )
return ((tf.concat([v[0][0] for v in vs], axis=0),
tf.concat([v[0][1] for v in vs], axis=0),
tf.concat([v[0][2] + m for v,m in zip(vs, first_offset) ], axis=0),
tf.concat([v[0][3] + m for v,m in zip(vs, second_offset) ], axis=0),
tf.concat([ tf.cast( tf.zeros_like(vs[i][0][0][:,0]) + i, tf.int32) for i in range(batch_size) ], axis=0) ),
tf.expand_dims(tf.stack([v[1] for v in vs], axis=0), axis=[1])
)
def make_set():
ds = tf.data.TFRecordDataset([args.eval])
ds = ds.map(parse)
ds = ds.apply(tf.data.experimental.shuffle_and_repeat(args.buf))
it = ds.make_one_shot_iterator()
with tf.device("/cpu:0"):
return transformation_func(it, args.batch_size)
def make_trainset():
ds = tf.data.TFRecordDataset([args.train])
ds = ds.map(parse)
ds = ds.apply(tf.data.experimental.shuffle_and_repeat(args.buf))
it = ds.make_one_shot_iterator()
with tf.device("/cpu:0"):
return transformation_func(it, args.batch_size)
def make_testset():
ds = tf.data.TFRecordDataset([args.test])
ds = ds.map(parse)
it = ds.make_one_shot_iterator()
with tf.device("/cpu:0"):
return transformation_func(it, args.batch_size)
def line_1(x1,x2):
xmin=np.min(x1.tolist()+x2.tolist())
xmax=np.max(x1.tolist()+x2.tolist())
lines = plt.plot([1.1*xmin,1.1*xmax],[1.1*xmin,1.1*xmax])
return lines
def fitquality (y,f):
'''
Computes $R^2$
Args:
x true label
f predictions
'''
#r = np.corrcoef(np.squeeze(y),np.squeeze(f))
#return r[0,1]
#R2 = 1-np.var(f-y)/np.var(y)
ssres=np.sum((y-f)**2)
sstot=np.sum( (y-np.mean(y))**2 )
R2 = 1-ssres/sstot
return R2
class MessagePassing(tf.keras.Model):
def __init__(self):
super(MessagePassing, self).__init__()
self.l = tf.keras.Sequential([
tf.keras.layers.Dense(args.Mhid,activation=tf.nn.selu),
tf.keras.layers.Dense(N_H*N_H),
tf.keras.layers.Reshape((N_H,N_H))
])
self.b = tf.keras.Sequential([
tf.keras.layers.Dense(args.Mhid,activation=tf.nn.selu),
tf.keras.layers.Dense(N_H)
])
self.u = tf.keras.layers.GRUCell(N_H)
self.i = tf.keras.Sequential([
tf.keras.layers.Dense(args.rn,activation=tf.nn.tanh),
tf.keras.layers.Dense(args.rn)
])
self.j = tf.keras.Sequential([
tf.keras.layers.Dense(args.rn,activation=tf.nn.selu),
tf.keras.layers.Dense(args.rn)
])
self.f = tf.keras.Sequential([
tf.keras.layers.Dense(args.ninf,activation=tf.nn.selu),
tf.keras.layers.Dense(1)
])
def build(self, input_shape=None):
del input_shape
self.l.build(tf.TensorShape([None, 1]))
self.b.build(tf.TensorShape([None, 1]))
self.u.build(tf.TensorShape([None, N_H]))
self.i.build(tf.TensorShape([None, N_H+2]))
self.j.build(tf.TensorShape([None, N_H+2]))
self.j.build(tf.TensorShape([None, args.rn]))
self.built = True
def call(self, inputs, training=False):
(x,e,first,second,segment) = inputs
h=tf.pad(x,[[0,0],[0,N_PAD]])
for i in range(N_PAS):
m = self._M(tf.gather(h,first),e)
num_segments=tf.cast(tf.reduce_max(second)+1,tf.int32)
m = tf.unsorted_segment_sum(m,second,num_segments)
h,_ = self.u(m,[h])
node_batch = self._R(h,x,segment)
return self.f(node_batch)
def _M(self,h,e):
a = self.l(e)
m=tf.matmul(a,tf.expand_dims(h,axis=2) )
m = tf.squeeze(m)
b = self.b(e)
return m + b
def _R(self,h,x,segment):
hx=tf.concat([h,x],axis=1)
RR = tf.nn.sigmoid(self.i(hx))
RR = tf.multiply(RR,self.j(hx))
return tf.segment_sum(RR,segment)
if __name__== "__main__":
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
print(args)
g=tf.Graph()
with g.as_default():
global_step = tf.train.get_or_create_global_step()
((x,e,first,second,segment),W)=make_trainset()
model = MessagePassing()
predictions = model((x,e,first,second,segment),training=True)
labels=W
loss= tf.losses.mean_squared_error(W,predictions)
rel = tf.reduce_mean(tf.abs( (labels-predictions)/labels) )
trainables = model.variables
grads = tf.gradients(loss, trainables)
grad_var_pairs = zip(grads, trainables)
summaries = [tf.summary.histogram(var.op.name, var) for var in trainables]
summaries += [tf.summary.histogram(g.op.name, g) for g in grads if g is not None]
summaries.append(tf.summary.scalar('train_mse', loss))
#summaries.append(tf.summary.scalar('train_relative_absolute_error', rel))
summary_op = tf.summary.merge(summaries)
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
#o=tf.train.RMSPropOptimizer(learning_rate=0.001)
#train = o.apply_gradients(grad_var_pairs)
train=tf.train.RMSPropOptimizer(learning_rate=0.001).minimize(loss, global_step=global_step)
test_batch, test_labels = make_testset()
test_predictions = model(test_batch,training=False)
test_relative = tf.abs( (test_labels-test_predictions)/(test_labels + args.W_shift/args.W_scale ) )
mare = tf.reduce_mean(test_relative)
test_summaries = [tf.summary.histogram('test_relative_absolute_error', test_relative)]
test_summaries.append(tf.summary.scalar('test_mse', tf.reduce_mean( (test_labels-test_predictions)**2 ) ) )
test_summary_op = tf.summary.merge(test_summaries)
saver = tf.train.Saver(trainables + [global_step])
with tf.Session(graph=g) as ses:
ses.run(tf.local_variables_initializer())
ses.run(tf.global_variables_initializer())
ckpt=tf.train.latest_checkpoint(args.log_dir)
if ckpt:
print("Loading checkpint: %s" % (ckpt))
tf.logging.info("Loading checkpint: %s" % (ckpt))
saver.restore(ses, ckpt)
writer=tf.summary.FileWriter(args.log_dir, ses.graph)
for i in range(args.I):
_,mse_loss,summary_py, step = ses.run([train,loss,summary_op, global_step])
writer.add_summary(summary_py, global_step=step)
if step % 100 ==0:
test_label_py, test_predictions_py, test_summary_py = ses.run([test_labels, test_predictions, test_summary_op])
#test_ae = np.abs((test_predictions_py-test_label_py)/test_label_py)
test_error = test_predictions_py-test_label_py
R2 = fitquality(test_label_py,test_predictions_py)
print('{} step: {} train_mse: {}, test_mse: {} R**2: {}'.format(
str(datetime.datetime.now()),
step,
mse_loss,
np.mean(test_error**2),
#np.max(np.abs(test_error)),
R2 ), flush=True )
writer.add_summary(test_summary_py, global_step=step)
checkpoint_path = os.path.join(args.log_dir, 'model.ckpt')
saver.save(ses, checkpoint_path, global_step=step)
#make scatter plot
fig = plt.figure()
plt.plot(test_label_py,test_predictions_py,'.')
line_1(test_label_py, test_label_py)
plt.xlabel('test label')
plt.ylabel('test predictions')
plt.title(str(step))
#fig_path = os.path.join(args.log_dir,'scatter-{0:08}.png'.format(step) )
#plt.savefig(fig_path)
with io.BytesIO() as buf:
w,h = fig.canvas.get_width_height()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close()
summary = tf.Summary(value= [
tf.Summary.Value( tag="regression",
image=tf.Summary.Image(height = h, width =w,
colorspace =3 , encoded_image_string = buf.read()) ),
tf.Summary.Value(tag="R2", simple_value=R2)
])
writer.add_summary(summary, global_step=step)
writer.flush()
writer.close()