-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimplicit1.go
49 lines (43 loc) · 1.54 KB
/
implicit1.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
package crcutil
// FromImplicit1Notation returns a [Poly] with the word k converted from
// Koopman's implicit +1 notation to the explicit +1 notation used within this module.
// An advantage of the implicit +1 notation is that the bit width
// of the polynomial can be derived from the word value.
//
// Notation examples:
//
// implicit +1: 1*x^3 + 0*x^2 + 1*x^1 + (1*x^0) = 0b 1 01(1) => 0x5
// explicit +1: (1*x^3) + 0*x^2 + 1*x^1 + 1*x^0 = 0b(1)01 1 => 0x3
//
// See https://users.ece.cmu.edu/~koopman/crc/notes.html for details.
//
// Note that the implicit +1 notation is only a different way to write
// the polynomial word, but there is no algorithmic difference calculating
// the CRC.
// A word in implicit +1 notation looks identical to the word value
// of a [Poly] refering to the same polynomial,
// but converted to reverse reciprocal form.
func FromImplicit1Notation[T Word](k T) *Poly[T] {
n := 0
for v := k; v != 0; v >>= 1 {
n++
}
// Make room for the explicit +1 bit.
k <<= 1
// Clear the topmost bit. This is a no-op if n equals the word width.
k ^= 1 << n
// Add explicit +1 bit.
w := k | 1
return &Poly[T]{Word: w, Width: n}
}
// FromImplicit1NotationReciprocal is like [FromImplicit1Notation] but returns a [Poly]
// with the Reciprocal flag set.
//
// Note: A word in implicit +1 notation looks identical to the word value
// of a [Poly] refering to the same polynomial,
// but converted to reverse form.
func FromImplicit1NotationReciprocal[T Word](k T) *Poly[T] {
p := FromImplicit1Notation(k)
p.Reciprocal = true
return p
}