-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlfi_no_tuning.yaml
126 lines (95 loc) · 4.94 KB
/
lfi_no_tuning.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
###################################################################################
###################################################################################
# number of simulations to run
Nsims: 30000
#number of sims to run in parallel
num_parallel: 20
###################################################################################
###################################################################################
# nside of NILC maps
nside: 128
# maximum ell for power spectra
ellmax: 250
# number of ell-space bins
Nbins: 10
# noise level in uK arcmin for each frequency channel
noise: [2500., 2500., 2500.]
# frequencies for maps, in GHz
freqs: [90., 150., 220.]
# components in the sky model (not including instrumental noise)
# e.g. comps: ['cmb', 'tsz']
comps: ['cmb', 'tsz']
# amplification factor for each component map
# e.g. if the second component is tsz and the second element of amp_factors is 150.,
# the fiducial tsz map will be multiplied by a factor of 150.
amp_factors: [1., 150.]
# List of paths to files or directories containing maps of each component in
# comps list (in the same order). For each component, if the corresponding
# path is a file, the code will use that file to generate several Gaussian
# realizations with the same power spectrum. If the corresponding path is a
# directory, the code will search for files in that directory of the form
# {comp}_00000.fits, {comp}_00001.fits, etc. In this example, the first path should
# correspond to the first component in comps (cmb). Since it's a file,
# the code will generate several Gaussian realizations of the power spectrum in the file.
# The second path should correspond to the second component in comps (tsz).
# Since the path provided is a directory, the code will look for
# tsz_00000.fits, tsz_00001.fits, etc. CMB maps are assumed to be in units of K_CMB.
# All other maps are assumed to have the assumed frequency dependence factored out
# (e.g. tSZ maps should be in dimensionless Compton-y units).
paths_to_comps: [
'/scratch/09334/ksurrao/NILC/inputs/cmb_lensed_nside1024_K.fits',
'/scratch/09334/ksurrao/NILC/inputs/halosky_maps'
]
# number of needlet filter scales
Nscales: 4
# array of FWHM used for constrution of Gaussians
# (needlet filters are differences of two Gaussians).
# FWHM need to be in strictly decreasing order.
GN_FWHM_arcmin: [300., 120., 60.]
###################################################################################
###################################################################################
# Set to True to use likelihood-free inference (recommended)
# If set to False, will use analytic Gaussian likelihood, which is only accurate if
# use_Gaussian_tSZ is True
use_lfi: True
# Half widths of prior to use for LFI
# The prior will be set to [1.0-prior_half_width, 1.0+prior_half_width]
# Only need to be provided if use_lfi is True; otherwise this input is ignored
# Should be list of 2 elements (prior half-widths for Acmb, Atsz)
prior_half_widths: [0.085, 0.8]
# Whether to tune hyperparameters in likelihood-free inference.
# If use_lfi is False, this input is ignored if provided.
# Set to True to use wandb to tune hyperparameters.
# (See note in README about setting up and logging into wandb before
# running the program. In this case, the wandb_project_name variable must be provided.)
# Set to False to manually set hyperparameters in the section below.
tune_hyperparameters: False
###################################################################################
###################################################################################
# For each of the parameters in this section, if tune_hyperparameters is True,
# the input is ignored if provided. Otherwise, a default value that has been tuned
# for the settings in this yaml is provided, but these can be changed.
# Learning rate for masked autoregressive flow.
learning_rate: 2.e-4
# Number of epochs to wait for improvement on the validation set before terminating training.
stop_after_epochs: 40
# Value at which to clip the total gradient norm in order to
# prevent exploding gradients. Use None for no clipping.
clip_max_norm: 5.0
# Number of transforms in the normalizing flow.
num_transforms: 5
# Number of hidden features in the model.
hidden_features: 50
###################################################################################
###################################################################################
# set to True for printing in debug mode (recommended to set to False for long runs)
verbose: False
# set to True to save pickle files
save_files: True
# Path to pyilc code
pyilc_path: '/work2/09334/ksurrao/stampede3/Github/pyilc'
# Path to folder to store outputs
# n.b. see note in README about setting this variable
output_dir: '/scratch/09334/ksurrao/NILC/outputs'
###################################################################################
###################################################################################