-
-
Notifications
You must be signed in to change notification settings - Fork 123
/
Copy pathprimesieve.hpp
198 lines (168 loc) Β· 6.07 KB
/
primesieve.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
///
/// @file primesieve.hpp
/// @brief primesieve C++ API. primesieve is a library for fast
/// prime number generation, in case an error occurs a
/// primesieve::primesieve_error exception (derived form
/// std::runtime_error) is thrown.
///
/// Copyright (C) 2024 Kim Walisch, <[email protected]>
///
/// This file is distributed under the BSD License.
///
#ifndef PRIMESIEVE_HPP
#define PRIMESIEVE_HPP
#define PRIMESIEVE_VERSION "12.6"
#define PRIMESIEVE_VERSION_MAJOR 12
#define PRIMESIEVE_VERSION_MINOR 6
#include <primesieve/iterator.hpp>
#include <primesieve/primesieve_error.hpp>
#include <primesieve/StorePrimes.hpp>
#include <stdint.h>
#include <string>
namespace primesieve {
/// Appends the primes <= stop to the end of the primes vector.
/// @vect: std::vector or other vector type that is API compatible
/// with std::vector.
///
template <typename vect>
inline void generate_primes(uint64_t stop, vect* primes)
{
if (primes)
store_primes(0, stop, *primes);
}
/// Appends the primes inside [start, stop] to the end of the primes vector.
/// @vect: std::vector or other vector type that is API compatible
/// with std::vector.
///
template <typename vect>
inline void generate_primes(uint64_t start, uint64_t stop, vect* primes)
{
if (primes)
store_primes(start, stop, *primes);
}
/// Appends the first n primes to the end of the primes vector.
/// @vect: std::vector or other vector type that is API compatible
/// with std::vector.
///
template <typename vect>
inline void generate_n_primes(uint64_t n, vect* primes)
{
if (primes)
store_n_primes(n, 0, *primes);
}
/// Appends the first n primes >= start to the end of the primes vector.
/// @vect: std::vector or other vector type that is API compatible
/// with std::vector.
///
template <typename vect>
inline void generate_n_primes(uint64_t n, uint64_t start, vect* primes)
{
if (primes)
store_n_primes(n, start, *primes);
}
/// Find the nth prime.
/// By default all CPU cores are used, use
/// primesieve::set_num_threads(int threads) to change the
/// number of threads.
///
/// Note that each call to nth_prime(n, start) incurs an
/// initialization overhead of O(sqrt(start)) even if n is tiny.
/// Hence it is not a good idea to use nth_prime() repeatedly in a
/// loop to get the next (or previous) prime. For this use case it
/// is better to use a primesieve::iterator which needs to be
/// initialized only once.
///
/// @param n if n = 0 finds the 1st prime >= start, <br/>
/// if n > 0 finds the nth prime > start, <br/>
/// if n < 0 finds the nth prime < start (backwards).
///
uint64_t nth_prime(int64_t n, uint64_t start = 0);
/// Count the primes within the interval [start, stop].
/// By default all CPU cores are used, use
/// primesieve::set_num_threads(int threads) to change the
/// number of threads.
///
/// Note that each call to count_primes() incurs an initialization
/// overhead of O(sqrt(stop)) even if the interval [start, stop]
/// is tiny. Hence if you have written an algorithm that makes
/// many calls to count_primes() it may be preferable to use
/// a primesieve::iterator which needs to be initialized only once.
///
uint64_t count_primes(uint64_t start, uint64_t stop);
/// Count the twin primes within the interval [start, stop].
/// By default all CPU cores are used, use
/// primesieve::set_num_threads(int threads) to change the
/// number of threads.
///
uint64_t count_twins(uint64_t start, uint64_t stop);
/// Count the prime triplets within the interval [start, stop].
/// By default all CPU cores are used, use
/// primesieve::set_num_threads(int threads) to change the
/// number of threads.
///
uint64_t count_triplets(uint64_t start, uint64_t stop);
/// Count the prime quadruplets within the interval [start, stop].
/// By default all CPU cores are used, use
/// primesieve::set_num_threads(int threads) to change the
/// number of threads.
///
uint64_t count_quadruplets(uint64_t start, uint64_t stop);
/// Count the prime quintuplets within the interval [start, stop].
/// By default all CPU cores are used, use
/// primesieve::set_num_threads(int threads) to change the
/// number of threads.
///
uint64_t count_quintuplets(uint64_t start, uint64_t stop);
/// Count the prime sextuplets within the interval [start, stop].
/// By default all CPU cores are used, use
/// primesieve::set_num_threads(int threads) to change the
/// number of threads.
///
uint64_t count_sextuplets(uint64_t start, uint64_t stop);
/// Print the primes within the interval [start, stop]
/// to the standard output.
///
void print_primes(uint64_t start, uint64_t stop);
/// Print the twin primes within the interval [start, stop]
/// to the standard output.
///
void print_twins(uint64_t start, uint64_t stop);
/// Print the prime triplets within the interval [start, stop]
/// to the standard output.
///
void print_triplets(uint64_t start, uint64_t stop);
/// Print the prime quadruplets within the interval [start, stop]
/// to the standard output.
///
void print_quadruplets(uint64_t start, uint64_t stop);
/// Print the prime quintuplets within the interval [start, stop]
/// to the standard output.
///
void print_quintuplets(uint64_t start, uint64_t stop);
/// Print the prime sextuplets within the interval [start, stop]
/// to the standard output.
///
void print_sextuplets(uint64_t start, uint64_t stop);
/// Returns the largest valid stop number for primesieve.
/// @return 2^64-1 (UINT64_MAX).
///
uint64_t get_max_stop();
/// Get the current set sieve size in KiB.
int get_sieve_size();
/// Get the current set number of threads.
int get_num_threads();
/// Set the sieve size in KiB (kibibyte).
/// The best sieving performance is achieved with a sieve size
/// of your CPU's L1 or L2 cache size (per core).
/// @pre sieve_size >= 16 && <= 8192.
///
void set_sieve_size(int sieve_size);
/// Set the number of threads for use in
/// primesieve::count_*() and primesieve::nth_prime().
/// By default all CPU cores are used.
///
void set_num_threads(int num_threads);
/// Get the primesieve version number, in the form βi.jβ.
std::string primesieve_version();
}
#endif