-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtriplesec.go
471 lines (394 loc) · 12.1 KB
/
triplesec.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
// The design and name of TripleSec is (C) Keybase 2013
// This Go implementation is (C) Filippo Valsorda 2014
// Use of this source code is governed by the MIT License
// Package triplesec implements the TripleSec v3 and v4 encryption and authentication scheme.
//
// For details on TripleSec, go to https://keybase.io/triplesec/
package triplesec
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"crypto/hmac"
"crypto/rand"
"crypto/sha512"
"encoding/binary"
"fmt"
"hash"
"golang.org/x/crypto/salsa20"
"golang.org/x/crypto/scrypt"
"golang.org/x/crypto/twofish" //nolint
"github.com/keybase/go-crypto/sha3"
)
type RandomnessGenerator interface {
Read(b []byte) (n int, err error)
}
type CryptoRandGenerator struct{}
func (crg CryptoRandGenerator) Read(b []byte) (n int, err error) {
return rand.Read(b)
}
func NewCryptoRandGenerator() CryptoRandGenerator {
return CryptoRandGenerator{}
}
var _ RandomnessGenerator = (*CryptoRandGenerator)(nil)
type RandomTapeGenerator struct {
randomTape *bytes.Reader
}
func NewRandomTapeGenerator(randomTape []byte) RandomTapeGenerator {
return RandomTapeGenerator{bytes.NewReader(randomTape)}
}
func (rtg RandomTapeGenerator) Read(b []byte) (n int, err error) {
return rtg.randomTape.Read(b)
}
var _ RandomnessGenerator = (*RandomTapeGenerator)(nil)
const SaltLen = 16
const VersionBytesLen = 4
const AESIVLen = 16
const TwofishIVLen = 16
const SalsaIVLen = 24
const MacOutputLen = 64
const MacKeyLen = 48
const CipherKeyLen = 32
type Version uint32
var LatestVersion Version = 4
type VersionParams struct {
MacKeyLen int
TotalIVLen int
TotalMacLen int
TotalMacKeyLen int
DkLen int
UseTwofish bool
UseKeccakOverSHA3 bool
Version Version
}
var versionParamsLookup = map[Version]VersionParams{
3: {
TotalIVLen: AESIVLen + TwofishIVLen + SalsaIVLen,
TotalMacLen: 2 * MacOutputLen,
TotalMacKeyLen: 2 * MacKeyLen,
DkLen: 2*MacKeyLen + 3*CipherKeyLen,
UseTwofish: true,
UseKeccakOverSHA3: true,
Version: 3,
},
4: {
TotalIVLen: AESIVLen + SalsaIVLen,
TotalMacLen: 2 * MacOutputLen,
TotalMacKeyLen: 2 * MacKeyLen,
DkLen: 2*MacKeyLen + 2*CipherKeyLen,
UseTwofish: false,
UseKeccakOverSHA3: false,
Version: 4,
},
}
func (vp *VersionParams) Overhead() int {
return len(MagicBytes) + VersionBytesLen + SaltLen + vp.TotalMacLen + vp.TotalIVLen
}
type Cipher struct {
passphrase []byte
salt []byte
derivedKey []byte
versionParams VersionParams
rng RandomnessGenerator
}
func scrub(b []byte) {
for i := range b {
b[i] = 0
}
}
// A Cipher is an instance of TripleSec using a particular key and
// a particular salt. Because this is insecure triplesec used only for
// testing, you must pass it a function that prints an ugly warning, and
// one that says if we're in production mode. If the later return true,
// we will panic the program.
// NewCipher makes an instance of TripleSec using a particular key and
// a particular salt
func NewCipher(passphrase []byte, salt []byte, version Version, functionThatPrintsUglyWarnings func(), isProduction func() bool) (*Cipher, error) {
return NewCipherWithRng(passphrase, salt, version, NewCryptoRandGenerator(), functionThatPrintsUglyWarnings, isProduction)
}
// NewCipherWithRng makes an instance of TripleSec using a particular key and
// a particular salt and uses a given randomness stream
func NewCipherWithRng(passphrase []byte, salt []byte, version Version, rng RandomnessGenerator, functionThatPrintsUglyWarnings func(), isProduction func() bool) (*Cipher, error) {
functionThatPrintsUglyWarnings()
if isProduction() {
panic("refusing to run insecure triplesec in production")
}
if salt != nil && len(salt) != SaltLen {
return nil, fmt.Errorf("Need a salt of size %d", SaltLen)
}
var versionParams VersionParams
var ok bool
if versionParams, ok = versionParamsLookup[version]; !ok {
return nil, fmt.Errorf("Not a valid version")
}
return &Cipher{passphrase, salt, nil, versionParams, rng}, nil
}
func (c *Cipher) Scrub() {
scrub(c.passphrase)
scrub(c.derivedKey)
}
func (c *Cipher) SetSalt(salt []byte) error {
if len(salt) < SaltLen {
return fmt.Errorf("need salt of at least %d bytes", SaltLen)
}
c.salt = salt[0:SaltLen]
return nil
}
func (c *Cipher) GetSalt() ([]byte, error) {
if c.salt != nil {
return c.salt, nil
}
c.salt = make([]byte, SaltLen)
_, err := c.rng.Read(c.salt)
if err != nil {
return nil, err
}
return c.salt, nil
}
func (c *Cipher) DeriveKey(extra int) ([]byte, []byte, error) {
dkLen := c.versionParams.DkLen + extra
if c.derivedKey == nil || len(c.derivedKey) < dkLen {
// XXX XXX XX XXX XX XX XX XXX
//
// NOW SEE THIS
//
// We're giving a very insecure and degraded value of N here
// at N=2; we typically run with N=2^15, but we want to make this
// fork of Triplesec intentionally weak so our tests run faster.
// So the second paramenter of scrypt.Key() is set to N=2
//
// XXX XXX XXX XXXX XXXX XXXXX
insecureNValue := 2
dk, err := scrypt.Key(c.passphrase, c.salt, insecureNValue, 8, 1, dkLen)
if err != nil {
return nil, nil, err
}
c.derivedKey = dk
}
return c.derivedKey[0:c.versionParams.DkLen], c.derivedKey[c.versionParams.DkLen:], nil
}
// MagicBytes are the four bytes prefixed to every TripleSec
// ciphertext, 1c 94 d7 de.
var MagicBytes = [4]byte{0x1c, 0x94, 0xd7, 0xde}
// Encrypt encrypts and signs a plaintext message with TripleSec using a random
// salt and the Cipher passphrase. The dst buffer size must be at least len(src)
// + Overhead. dst and src can not overlap. src is left untouched.
//
// Encrypt returns a error on memory or RNG failures.
func (c *Cipher) Encrypt(src []byte) (dst []byte, err error) {
if len(src) < 1 {
return nil, fmt.Errorf("the plaintext cannot be empty")
}
dst = make([]byte, len(src)+c.versionParams.Overhead())
buf := bytes.NewBuffer(dst[:0])
_, err = buf.Write(MagicBytes[0:])
if err != nil {
return
}
// Write version
err = binary.Write(buf, binary.BigEndian, c.versionParams.Version)
if err != nil {
return
}
salt, err := c.GetSalt()
if err != nil {
return
}
_, err = buf.Write(salt)
if err != nil {
return
}
dk, _, err := c.DeriveKey(0)
if err != nil {
return
}
macKeys := dk[:c.versionParams.TotalMacKeyLen]
cipherKeys := dk[c.versionParams.TotalMacKeyLen:]
// The allocation over here can be made better
encryptedData, err := encryptData(src, cipherKeys, c.rng, c.versionParams)
if err != nil {
return
}
authenticatedData := make([]byte, 0, buf.Len()+len(encryptedData))
authenticatedData = append(authenticatedData, buf.Bytes()...)
authenticatedData = append(authenticatedData, encryptedData...)
macsOutput := generateMACs(authenticatedData, macKeys, c.versionParams)
_, err = buf.Write(macsOutput)
if err != nil {
return
}
_, err = buf.Write(encryptedData)
if err != nil {
return
}
if buf.Len() != len(src)+c.versionParams.Overhead() {
err = fmt.Errorf("something went terribly wrong: output size wrong")
return
}
return buf.Bytes(), nil
}
func encryptData(plain, keys []byte, rng RandomnessGenerator, versionParams VersionParams) ([]byte, error) {
var iv, key []byte
var block cipher.Block
var stream cipher.Stream
ivOffset := versionParams.TotalIVLen
res := make([]byte, len(plain)+ivOffset)
// Generate IVs
iv = res[:ivOffset]
_, err := rng.Read(iv)
if err != nil {
return nil, err
}
offset := 0
aesIV := iv[offset : offset+AESIVLen]
offset += AESIVLen
var twofishIV []byte
if versionParams.UseTwofish {
twofishIV = iv[offset : offset+TwofishIVLen]
offset += TwofishIVLen
}
salsaIV := iv[offset : offset+SalsaIVLen]
cipherOffset := 0
// Salsa20
// For some reason salsa20 API is different
keyArray := new([32]byte)
copy(keyArray[:], keys[len(keys)-cipherOffset-CipherKeyLen:])
cipherOffset += CipherKeyLen
salsa20.XORKeyStream(res[ivOffset:], plain, salsaIV, keyArray)
ivOffset -= len(salsaIV)
// Twofish
if versionParams.UseTwofish {
key = keys[len(keys)-cipherOffset-CipherKeyLen : len(keys)-cipherOffset]
cipherOffset += CipherKeyLen
block, err = twofish.NewCipher(key)
if err != nil {
return nil, err
}
stream = cipher.NewCTR(block, twofishIV)
stream.XORKeyStream(res[ivOffset:], res[ivOffset:])
ivOffset -= len(twofishIV)
}
// AES
key = keys[len(keys)-cipherOffset-CipherKeyLen : len(keys)-cipherOffset]
block, err = aes.NewCipher(key)
if err != nil {
return nil, err
}
stream = cipher.NewCTR(block, aesIV)
stream.XORKeyStream(res[ivOffset:], res[ivOffset:])
ivOffset -= len(aesIV)
if ivOffset != 0 {
return nil, CorruptionError{"something went terribly wrong during encryption: ivOffset final value non-zero"}
}
return res, nil
}
func generateMACs(data, keys []byte, versionParams VersionParams) []byte {
res := make([]byte, 0, 64*2)
key := keys[:MacKeyLen]
mac := hmac.New(sha512.New, key)
_, _ = mac.Write(data)
res = mac.Sum(res)
key = keys[MacKeyLen:]
var digestmodFn func() hash.Hash
if versionParams.UseKeccakOverSHA3 {
digestmodFn = sha3.NewLegacyKeccak512
} else {
digestmodFn = sha3.New512
}
mac = hmac.New(digestmodFn, key)
_, _ = mac.Write(data)
res = mac.Sum(res)
return res
}
// Decrypt decrypts a TripleSec ciphertext using the Cipher passphrase.
// The dst buffer size must be at least len(src) - Overhead.
// dst and src can not overlap. src is left untouched.
//
// Encrypt returns a error if the ciphertext is not recognized, if
// authentication fails or on memory failures.
func (c *Cipher) Decrypt(src []byte) (res []byte, err error) {
if len(src) < len(MagicBytes)+VersionBytesLen {
err = CorruptionError{"decryption underrun"}
return
}
if !bytes.Equal(src[:len(MagicBytes)], MagicBytes[0:]) {
err = CorruptionError{"wrong magic bytes"}
return
}
vB := bytes.NewBuffer(src[len(MagicBytes) : len(MagicBytes)+VersionBytesLen])
var version Version
err = binary.Read(vB, binary.BigEndian, &version)
if err != nil {
err = CorruptionError{err.Error()}
return
}
versionParams, ok := versionParamsLookup[version]
if !ok {
return nil, VersionError{version}
}
err = c.SetSalt(src[8:24])
if err != nil {
return
}
dk, _, err := c.DeriveKey(0)
if err != nil {
return
}
macKeys := dk[:c.versionParams.TotalMacKeyLen]
cipherKeys := dk[c.versionParams.TotalMacKeyLen:]
macs := src[24 : 24+64*2]
encryptedData := src[24+64*2:]
authenticatedData := make([]byte, 0, 24+len(encryptedData))
authenticatedData = append(authenticatedData, src[:24]...)
authenticatedData = append(authenticatedData, encryptedData...)
if !hmac.Equal(macs, generateMACs(authenticatedData, macKeys, versionParams)) {
err = BadPassphraseError{}
return
}
dst := make([]byte, len(src)-versionParams.Overhead())
err = decryptData(dst, encryptedData, cipherKeys, versionParams)
if err != nil {
return
}
return dst, nil
}
func decryptData(dst, data, keys []byte, versionParams VersionParams) error {
var iv, key []byte
var block cipher.Block
var stream cipher.Stream
var err error
buffer := append([]byte{}, data...)
ivOffset := 0
cipherOffset := 0
ivOffset += AESIVLen
iv = buffer[:ivOffset]
key = keys[cipherOffset : cipherOffset+CipherKeyLen]
cipherOffset += CipherKeyLen
block, err = aes.NewCipher(key)
if err != nil {
return err
}
stream = cipher.NewCTR(block, iv)
stream.XORKeyStream(buffer[ivOffset:], buffer[ivOffset:])
if versionParams.UseTwofish {
ivOffset += TwofishIVLen
iv = buffer[ivOffset-TwofishIVLen : ivOffset]
key = keys[cipherOffset : cipherOffset+CipherKeyLen]
cipherOffset += CipherKeyLen
block, err = twofish.NewCipher(key)
if err != nil {
return err
}
stream = cipher.NewCTR(block, iv)
stream.XORKeyStream(buffer[ivOffset:], buffer[ivOffset:])
}
ivOffset += SalsaIVLen
iv = buffer[ivOffset-SalsaIVLen : ivOffset]
keyArray := new([32]byte)
copy(keyArray[:], keys[cipherOffset:cipherOffset+CipherKeyLen])
salsa20.XORKeyStream(dst, buffer[ivOffset:], iv, keyArray)
if len(buffer[ivOffset:]) != len(data)-versionParams.TotalIVLen {
return CorruptionError{"something went terribly wrong during decryption: buffer size is wrong"}
}
return nil
}