-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultiples_analyze.py
184 lines (162 loc) · 8.67 KB
/
multiples_analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
from sys import argv
from getopt import getopt
from os import system, chdir
from multiples_analyze_functions import *
from multiples_analyze_functions import _get_logg_MS, _list_mag_photometry
imp.load_source('gaia_twins_photometry_functions', '../Solar-spectral-siblings/gaia_twins_photometry_functions.py')
from gaia_twins_photometry_functions import fit_MS_lin_line
# read and parse input arguments if passed to this py procedure
output_dir = 'Mag_fit'
RECOMPUTE = False
RECOMPUTE_FINAL = False
RUN_SINGLE_STARS = False
feh_init = None
params_run = None
params_run_magthr = None
process_obj_begin = 0
process_obj_end = 50000
if len(argv) > 1:
# parse input options
opts, args = getopt(argv[1:], '', ['obj_beg=', 'obj_end=', 'dir=', 'feh=', 'single=', 'params=', 'magthr='])
# set parameters, depending on user inputs
print opts
for o, a in opts:
if o == '--obj_beg':
process_obj_begin = np.int64(a)
if o == '--obj_end':
process_obj_end = np.int64(a)
if o == '--dir':
output_dir = str(a)
if o == '--feh':
feh_init = np.float64(a)
if o == '--single':
sing_int = np.int32(a)
if sing_int > 0:
RUN_SINGLE_STARS = True
if o == '--params':
params_run = a
if o == '--magthr':
params_run_magthr = np.float64(a)
envelope_sel = '07'
if params_run is not None and params_run_magthr is not None:
# read list of objects for selected parameter suffix
list_objects_read = get_sobjects_from_final_selection(out_dir_root + 'Distances_Step1_p0_SNRsamples0_ext4_oklinesonly_G20180327_C181221_withH_refpar_' + params_run +'/final_selection_' + envelope_sel + '_envelope.txt')
else:
# read list of objects for Solar-twins
list_objects_read = get_sobjects_from_final_selection(out_dir_root + 'Distances_Step1_p0_SNRsamples0_ext0_oklinesonly_G20180327_C181221_withH/final_selection_' + envelope_sel+ '_envelope.txt')
# determine which objects are to be analysed
galah_gaia_sub = galah_gaia_data[np.in1d(galah_gaia_data['sobject_id'], list_objects_read)]['sobject_id', 'parallax', 'phot_g_mean_mag', 'r_est', 'phot_bp_mean_mag', 'phot_rp_mean_mag']
# abs_mags = galah_gaia_sub['phot_g_mean_mag'] - 2.5 * np.log10(((1e3 / galah_gaia_sub['parallax']) / 10.) ** 2)
abs_mags = galah_gaia_sub['phot_g_mean_mag'] - 2.5 * np.log10(((galah_gaia_sub['r_est']) / 10.) ** 2)
bp_rp_mags = galah_gaia_sub['phot_bp_mean_mag'] - galah_gaia_sub['phot_rp_mean_mag']
# do a MS fit on selected objects
bin_bp_rb = 0.25
ms_lin_line = fit_MS_lin_line(abs_mags, bp_rp_mags, path=None, d_above=bin_bp_rb)
if RUN_SINGLE_STARS:
# select stars bellow the binary line
list_objects = galah_gaia_sub['sobject_id'][abs_mags > (ms_lin_line(bp_rp_mags) - bin_bp_rb)]
else:
# select stars above the binary line
list_objects = galah_gaia_sub['sobject_id'][abs_mags <= (ms_lin_line(bp_rp_mags) - bin_bp_rb)]
print 'Number of selected objects:', len(list_objects)
system('mkdir '+out_dir_root+output_dir)
chdir(out_dir_root+output_dir)
table_out_fits = 'fit_results.fits'
if path.isfile(table_out_fits):
print 'Reading previous results'
table_out = Table.read(table_out_fits)
else: # sim_p0_exc, sim_p0_chi, sim_p2, sim_f_onestar, sim_f
s1_cols = ['s1_teff1', 's1_feh', 'phot_excs', 'phot_chi2', 's1_sim_p', 'spec_chi2', 's1_sim_f']
s2_cols = ['s2_teff1', 's2_teff2', 's2_feh', 'phot_excs2', 'phot_chi22', 's2_sim_p', 'spec_chi22', 's2_sim_f']
s3_cols = ['s3_teff1', 's3_teff2', 's3_teff3', 's3_feh', 'phot_excs3', 'phot_chi23', 's3_sim_p', 'spec_chi23', 's3_sim_f']
all_cols = np.hstack((s1_cols, s2_cols, s3_cols))
all_dtype = np.full(len(all_cols), 'float64', dtype=np.dtype('S10'))
table_out = Table(names=np.hstack(('sobject_id', 'parallax', all_cols, 'n_stars_p', 'n_stars_f')),
dtype=np.hstack(('int64', 'float64', all_dtype, 'int32', 'int32')))
for s_id in [150408004101169]:#list_objects[process_obj_begin: process_obj_end]:
print '======================================================'
print '======================================================'
print '======================================================'
obj_data = galah_gaia_data[galah_gaia_data['sobject_id'] == s_id]
if len(obj_data) > 1:
obj_data.remove_rows([1])
parallax_orig = obj_data['parallax'][0]
parallax_std = obj_data['parallax_error'][0]
print 'Working on:', s_id, '(parallax: {:.3f}, parallax_error: {:.3f}, r_est: {:.1f})'.format(parallax_orig, parallax_std, obj_data['r_est'][0])
print obj_data['flag_cannon', 'Teff_cannon', 'Logg_cannon', 'Fe_H_cannon']
if obj_data['flag_cannon'] != 0:
print ' WARNING - Possibly problematic Cannon object'
idx_sids = table_out['sobject_id'] == s_id
n_sids = np.sum(idx_sids)
if n_sids > 0 and not (RECOMPUTE or RECOMPUTE_FINAL):
print ' Already processed'
continue
sub_dir = str(s_id)
system('mkdir ' + sub_dir)
chdir(sub_dir)
flx, flx_s, wvl = get_spectra_complete(s_id, get_bands=[1, 2, 3])
# filter out strange uncertanties
# max_flx_s = np.percentile(np.abs(flx_s), 95)
max_flx_s = 5 * np.median(np.abs(flx_s))
idx_strange = np.abs(flx_s) > max_flx_s
n_strange = np.sum(idx_strange)
if n_strange > 0:
print 'Flx_s corrected:', n_strange
flx_s[idx_strange] = max_flx_s
idx_strange = flx > 1.1
n_strange = np.sum(idx_strange)
if n_strange > 0:
print 'Flx corrected:', n_strange
flx[idx_strange] = 1.1
# set obj feh to the init value if set, else use cannon determined feh values
obj_data['Fe_H_cannon_orig'] = obj_data['Fe_H_cannon']
if feh_init is not None:
obj_data['Fe_H_cannon'] = feh_init
n_parallax = 1
if n_parallax <= 1:
# in the case of computation at only one distance of the source
parallax_sim = [obj_data['parallax'][0]]
else:
# in the case of computation at multiple source distances
if n_sids == 0 and not (RECOMPUTE or RECOMPUTE_FINAL):
parallax_sim = np.sort(np.random.normal(parallax_orig, parallax_std, n_parallax)) # sort from farthest to nearest
else:
if n_sids == 0:
parallax_sim = np.sort(np.random.normal(parallax_orig, parallax_std, n_parallax))
else:
print ' Reusing previously determined parallax distribution'
parallax_sim = table_out['parallax'][idx_sids]
# remove old results
if n_sids > 0 and (RECOMPUTE or RECOMPUTE_FINAL):
table_old_res = table_out[np.where(idx_sids)[0]]
table_out.remove_rows(np.where(idx_sids)[0])
print 'Removed rows from results:', np.sum(idx_sids)
if RECOMPUTE_FINAL:
for old_res in table_old_res:
parallax_use = obj_data['parallax'][0]
suffix_use = '_p{:.3f}'.format(parallax_use)
# run process to recompute final fitted parameters
s_time = time()
fit_res_all = fit_photometry_results_recompute(obj_data, flx, flx_s, wvl, old_res,
suffix=suffix_use, write_out=True,
fit_single=True, fit_double=True, fit_tripple=True)
print 'Recompute results time: {:.1f} s'.format((time() - s_time)), ' parallax used:', parallax_use
# store results to array
table_out.add_row(np.hstack((s_id, parallax_use, fit_res_all)))
else:
for parallax_use in parallax_sim:
obj_data['parallax'] = parallax_use
suffix_use = '_p{:.3f}'.format(parallax_use)
# run the complete fitting procedure
s_time = time()
fit_res_all = fit_photometry_to_object(obj_data, flx, flx_s, wvl, suffix=suffix_use, # input data, suffix based on parallax repeat number
fit_single=False, fit_double=False, fit_tripple=True, # which stellar configuration to fit
complete_wvl_range=True, fe_wvl_range_only=False, write_out=True, save_pkl=False,
nwalkers=150, n_steps_1=200, n_steps_2=200, n_steps_feh=100, n_threds=240) # number of fitting steps in MCMC
# nwalkers=160, n_steps_1=10, n_steps_2=10, n_steps_feh=10, n_threds=10)
print 'Fit time: {:.1f} min'.format((time()-s_time)/60.), ' parallax used:', parallax_use
# store results to array
table_out.add_row(np.hstack((s_id, parallax_use, fit_res_all)))
# write out results to fits file
chdir('..')
table_out.write(table_out_fits, overwrite=True)