-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.Rmd
341 lines (284 loc) · 12.7 KB
/
index.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
---
title: ' '
author: " "
date: " "
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
```{r packages, include=FALSE}
library(tidyverse)
library(htmlwidgets)
library(crosstalk)
library(leaflet)
library(ggiraph)
library(RColorBrewer)
```
<br>
*The section below was envisioned as an addition to [this NYT article](https://www.nytimes.com/2023/01/30/science/archaeology-bogs-mummies.html) about [new research](https://www.cambridge.org/core/journals/antiquity/article/bogs-bones-and-bodies-the-deposition-of-human-remains-in-northern-european-mires-9000-bcad-1900/B90A16A211894CB87906A7BCFC0B2FC7#) on mummified remains in European bogs.*
<br>
------------------------------------------------------------------------
### Unearthing insights {.tabset}
The study offers the first large-scale overview of well-dated human remains from northern European mires, with the principal goal to identify broad trends in frequency, location, and characteristics of finds. Researchers compiled a database consisting of 266 sites and more than 1,000 individuals. Using statistical modelling, they identified six major phases in history for this phenomenon. The main characteristics that distinguish each phase can be explored below.
<br>
![](images/Timeline.png){style="display: block; margin: 1em auto;" width="1000"}
<br>
<br>
#### Spatial
```{r echo=FALSE, message=FALSE, warning=FALSE}
# import csv for map
data_map <- read.csv("data/bog bodies data.csv")
# create shared data source for interactivity
shared_map <- SharedData$new(data_map)
# create a palette that maps phases to colors
pal1 <- colorFactor(c("red", "orange", "yellow", "green", "blue", "violet"),
domain = c(1:6)
)
pal2 <- colorFactor(c("#702632", "#682C49", "#583659", "#453E60", "#35445F", "#2F4858"),
domain = c(1:6)
)
pal3 <- colorFactor(c("#192D41", "#014C49", "#316046", "#8B8D72", "#805456", "#1A332B"),
domain = c(1:6)
)
# create map and filter within boostrap columns function
bscols(widths = c(1,4,7),
"",
("The first sites appear in Denmark, southern Sweden and Norway. In phases 2 and 3, sites pop up in Ireland and the UK. The coverage area increases to include Germany, Poland, and the Baltic states in phase 5. In phase 6 a significant shift occurs from Denmark to Ireland and the UK."),
list(leaflet(shared_map) %>%
addProviderTiles(providers$Stamen.TonerLite, group = "Lite") %>%
addProviderTiles(providers$Stamen.Terrain, group = "Terrain") %>%
#addProviderTiles(providers$Esri.WorldImagery, group = "World Imagery") %>%
addLayersControl(baseGroups = c("Lite", "Terrain")) %>%
addCircleMarkers(label = data_map$location,
#fillColor = "darkgoldenrod",
#fillColor = ~pal1(phase),
#fillColor = ~pal2(phase),
fillColor = ~pal3(phase),
fillOpacity = 0.6,
stroke = TRUE,
color = "black",
weight = 1,
radius = 5) %>%
setView(lat = 59.903689, lng = 10.746552, zoom = 3.5),
filter_checkbox("phase", "Filter by phase", shared_map,
~phase, inline = TRUE, columns = 1)
)
)
```
<br>
#### Preservation
```{r echo=FALSE, message=FALSE, warning=FALSE}
# import csv for preservation trends
data_preservation <- read.csv("data/trends_preservation.csv")
# create plot object
p1 <- ggplot(data = data_preservation,
aes(x = phase, y = remains_count,
fill = remains_type,
data_id = remains_type
)
) +
geom_col_interactive(aes(tooltip = sprintf("%s: %.0f", remains_type, remains_count)),
size = 0.25,
color = "gray15"
) +
labs(fill = "Type of remains",
x = "Phase",
y = "Count",
title = "Type of remains by phase",
subtitle = "Hover over the bars for more details"
# caption = "Hover over the bars for more details"
) +
scale_x_discrete(limits = c(1, 2, 3, 4, 5, 6), breaks = c(1, 2, 3, 4, 5, 6)) +
scale_fill_manual(values = c("gray30", "gray70")) +
guides(fill = FALSE) +
# guides(fill = guide_legend(title = NULL)) +
theme_minimal() +
theme(
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank(),
# plot.caption = element_text(hjust = 0)
)
# annotate("text", x = 1.5, y = 165, label = "Hover over bars for more details",
# size = 3, fontface = "italic")
# use bootstrap columns to call text and chart
bscols(widths = c(1,4,7),
"",
("Phase 1 and 2 sites yielded only bog skeletons. The first bog mummies don't appear until later, in phases 3 and 4, with just five bog mummies from before 1,000 BC. Phase 5 features a far larger number of bog mummies, although they still represent fewer than half of cases. The balance completely shifts in phase 6."),
girafe(ggobj = p1,
options = list(opts_sizing(rescale = TRUE, width = 1))
)
)
```
<br>
#### Age
```{r age, echo=FALSE, message=FALSE, warning=FALSE}
# import csv for age trends
data_age <- read.csv("data/trends_age.csv")
# create plot object
p2 <- ggplot(data = data_age,
aes(x = phase, y = age_count,
fill = age_type,
data_id = age_type
)
) +
geom_col_interactive(aes(tooltip = sprintf("%s: %.0f", age_type, age_count)),
size = 0.25,
color = "gray15",
position = position_stack(reverse = TRUE)
) +
labs(fill = "Age group",
x = "Phase",
y = "Count",
title = "Age of individuals by phase",
subtitle = "Hover over the bars for more details"
) +
scale_x_discrete(limits = c(1, 2, 3, 4, 5, 6), breaks = c(1, 2, 3, 4, 5, 6)) +
scale_fill_manual(values = c("gray70", "gray30")) +
# scale_fill_manual(labels = c("children", "adults"), values = c("gray30", "gray70")) +
guides(fill = FALSE) +
# guides(fill = guide_legend(title = NULL)) +
theme_minimal() +
theme(
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank()
)
# use bootstrap columns to call text and chart
bscols(widths = c(1,4,7),
"",
("Adults are most common throughout all phases. Children are present to a lesser degree in each phase, though missing entirely from phase 4. The age for 26 individuals could not be determined or is otherwise unknown."),
girafe(ggobj = p2,
options = list(opts_sizing(rescale = TRUE, width = 1))
)
)
```
<br>
#### Sex
```{r sex_v2, echo=FALSE, message=FALSE, warning=FALSE}
# import csv for sex trends
data_sex <- read.csv("data/trends_sex.csv")
# create plot object
p3 <- ggplot(data = data_sex,
aes(x = phase, y = sex_count,
fill = sex_type,
data_id = sex_type
)
) +
geom_col_interactive(aes(tooltip = sprintf("%s: %.0f", sex_type, sex_count)),
size = 0.25,
color = "gray15"
) +
labs(fill = "Sex",
x = "Phase",
y = "Count",
title = "Sex of individuals by phase",
subtitle = "Hover over the bars for more details"
) +
scale_x_discrete(limits = c(1, 2, 3, 4, 5, 6), breaks = c(1, 2, 3, 4, 5, 6)) +
scale_fill_manual(values = c("gray30", "gray70")) +
guides(fill = FALSE) +
# guides(fill = guide_legend(title = NULL)) +
theme_minimal() +
theme(
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank()
)
# use bootstrap columns to call text and chart
bscols(widths = c(1,4,7),
"",
("Males form the largest group in most phases. However, in phases 2 and 4 the balance is almost equal between males and females. The sex of 89 individuals could not be determined or is otherwise unknown."),
girafe(ggobj = p3,
options = list(opts_sizing(rescale = TRUE, width = 1))
)
)
```
<br>
#### Cause of Death
```{r death, echo=FALSE, message=FALSE, warning=FALSE}
# import csv for cause of death trends
data_death <- read.csv("data/trends_death.csv")
# create plot object
p4 <- ggplot(data = data_death,
aes(x = phase, y = death_count,
fill = death_type,
data_id = death_type
)
) +
geom_col_interactive(aes(tooltip = sprintf("%s: %.0f", death_type, death_count)),
size = 0.25,
color = "gray15"
) +
labs(fill = "Cause of death",
x = "Phase",
y = "Count",
title = "Cause of death by phase",
subtitle = "Hover over the bars for more details"
) +
scale_x_discrete(limits = c(1, 2, 3, 4, 5, 6), breaks = c(1, 2, 3, 4, 5, 6)) +
scale_fill_brewer(palette = "Greys", direction = -1) +
guides(fill = FALSE) +
# guides(fill = guide_legend(title = NULL)) +
theme_minimal() +
theme(
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank()
)
# use bootstrap columns to call text and chart
bscols(widths = c(1,4,7),
"",
("Cause of death is established for 57 individuals. In 45 cases, violence was involved, featuring in all phases except for phase 1. The highest proportions of violent deaths appear in phases 2 and 6. Evidence of violence appears to be less frequent in phase 4. In rare cases, only occurring in phase 5, disease is the probable cause of death. Phase 6 includes six suicide victims and four cases of accidental death (e.g. drowning)."),
girafe(ggobj = p4,
options = list(opts_sizing(rescale = TRUE, width = 1))
)
)
```
<br>
#### Violence
```{r violence, echo=FALSE, message=FALSE, warning=FALSE}
# import csv for violence breakdown
data_violence <- read.csv("data/trends_violence.csv")
# create plot object
p5 <- ggplot(data = data_violence,
aes(x = phase, y = violence_count,
fill = violence_type,
data_id = violence_type
)
) +
geom_col_interactive(aes(tooltip = sprintf("%s: %.0f", violence_type, violence_count)),
size = 0.25,
color = "gray15"
) +
labs(fill = "Type of violence",
x = "Phase",
y = "Count",
title = "Type of violence by phase",
subtitle = "Hover over the bars for more details"
) +
scale_x_discrete(limits = c(1, 2, 3, 4, 5, 6), breaks = c(1, 2, 3, 4, 5, 6)) +
scale_fill_brewer(palette = "Greys", direction = -1) +
guides(fill = FALSE) +
# guides(fill = guide_legend(title = NULL)) +
theme_minimal() +
theme(
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank()
)
# use bootstrap columns to call text and chart
bscols(widths = c(1,4,7),
"",
("The 45 individuals exhibiting evidence of a violent death can be further categorized. Head trauma is the leading violent cause of death and present in every phase. Stabbed and hanged individuals are tied for the second leading cause of violent death, and both show a strong presence in phase 5. Some individuals, mainly in phase 5, show signs of excessive violence, or overkill, with multiple potential causes of death. These are generally considered to be ritualistic offerings, though ritual and violent acts can be variously entangled, such as 'war-booty' sites."),
girafe(ggobj = p5,
options = list(opts_sizing(rescale = TRUE, width = 1))
)
)
```
<br>
#### Study Impact
This approach shows that widening the study's focus to encompass a larger study region, longer timeframe, the incorporation of bog mummies as well as bog skeletons, and the inclusion of both radiocarbon and historical dating evidence, permits new trends to come to light. The full database, freely available [here](https://www.cambridge.org/core/journals/antiquity/article/bogs-bones-and-bodies-the-deposition-of-human-remains-in-northern-european-mires-9000-bcad-1900/B90A16A211894CB87906A7BCFC0B2FC7#supplementary-materials), offers great potential for the recognition of other trends and for further study.
### {.unnumbered}
<br>